test_modeling_beit.py 22.7 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """


import inspect
import unittest

21
from datasets import load_dataset
22
from packaging import version
23

NielsRogge's avatar
NielsRogge committed
24
25
26
27
28
from transformers import BeitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

29
30
from ..test_configuration_common import ConfigTester
from ..test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
NielsRogge's avatar
NielsRogge committed
31
32
33
34
35
36


if is_torch_available():
    import torch
    from torch import nn

37
38
39
40
41
42
43
    from transformers import (
        MODEL_MAPPING,
        BeitForImageClassification,
        BeitForMaskedImageModeling,
        BeitForSemanticSegmentation,
        BeitModel,
    )
NielsRogge's avatar
NielsRogge committed
44
45
46
47
    from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, to_2tuple


if is_vision_available():
48
    import PIL
NielsRogge's avatar
NielsRogge committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    from PIL import Image

    from transformers import BeitFeatureExtractor


class BeitModelTester:
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
66
        num_hidden_layers=4,
NielsRogge's avatar
NielsRogge committed
67
68
69
70
71
72
73
74
75
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
76
        out_indices=[0, 1, 2, 3],
NielsRogge's avatar
NielsRogge committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    ):
        self.parent = parent
        self.vocab_size = 100
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
96
        self.out_indices = out_indices
97
        self.num_labels = num_labels
NielsRogge's avatar
NielsRogge committed
98
99
100
101
102

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
103
        pixel_labels = None
NielsRogge's avatar
NielsRogge committed
104
105
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
106
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
NielsRogge's avatar
NielsRogge committed
107
108
109

        config = self.get_config()

110
        return config, pixel_values, labels, pixel_labels
NielsRogge's avatar
NielsRogge committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def get_config(self):
        return BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
127
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
128
129
        )

130
    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
131
132
133
134
135
136
137
138
139
140
        model = BeitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(self.image_size)
        patch_size = to_2tuple(self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))

141
    def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
142
143
144
145
146
147
148
149
150
151
        model = BeitForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        # expected sequence length = num_patches
        image_size = to_2tuple(self.image_size)
        patch_size = to_2tuple(self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, self.vocab_size))

152
    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
153
154
155
156
157
158
159
        config.num_labels = self.type_sequence_label_size
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

160
161
162
163
164
165
166
    def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels):
        config.num_labels = self.num_labels
        model = BeitForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
167
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
168
169
170
        )
        result = model(pixel_values, labels=pixel_labels)
        self.parent.assertEqual(
171
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
172
173
        )

NielsRogge's avatar
NielsRogge committed
174
175
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
176
        config, pixel_values, labels, pixel_labels = config_and_inputs
NielsRogge's avatar
NielsRogge committed
177
178
179
180
181
182
183
184
185
186
187
188
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class BeitModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
189
190
191
        (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
        if is_torch_available()
        else ()
NielsRogge's avatar
NielsRogge committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    )

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = BeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # BEiT does not use inputs_embeds
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

235
236
237
238
    def test_for_image_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
239
240
241
242
243
244
245
246
247
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
248
            if model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]:
249
                continue
250
251
252
253
            # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
            # this can then be incorporated into _prepare_for_class in test_modeling_common.py
            elif model_class.__name__ == "BeitForSemanticSegmentation":
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
NielsRogge's avatar
NielsRogge committed
254
255
256
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
274
275
276
277
            if (
                model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]
                or not model_class.supports_gradient_checkpointing
            ):
NielsRogge's avatar
NielsRogge committed
278
                continue
279
280
281
282
            # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
            # this can then be incorporated into _prepare_for_class in test_modeling_common.py
            elif model_class.__name__ == "BeitForSemanticSegmentation":
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
NielsRogge's avatar
NielsRogge committed
283
284
285
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
NielsRogge's avatar
NielsRogge committed
286
            model = model_class(config)
287
            model.gradient_checkpointing_enable()
NielsRogge's avatar
NielsRogge committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        # in BEiT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
        image_size = to_2tuple(self.model_tester.image_size)
        patch_size = to_2tuple(self.model_tester.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        seq_len = num_patches + 1
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
347
348

            attentions = outputs.attentions
NielsRogge's avatar
NielsRogge committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

366
            self.assertEqual(out_len + 1, len(outputs))
NielsRogge's avatar
NielsRogge committed
367

368
            self_attentions = outputs.attentions
NielsRogge's avatar
NielsRogge committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            # BEiT has a different seq_length
            image_size = to_2tuple(self.model_tester.image_size)
            patch_size = to_2tuple(self.model_tester.patch_size)
            num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
            seq_length = num_patches + 1

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = BeitModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


436
@require_torch
NielsRogge's avatar
NielsRogge committed
437
438
439
440
441
442
443
444
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
        )

445
446
447
448
449
450
451
452
453
454
455
456
    @slow
    def test_inference_masked_image_modeling_head(self):
        model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(torch_device)

        # prepare bool_masked_pos
        bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)

        # forward pass
457
458
        with torch.no_grad():
            outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
459
460
461
462
463
464
465
466
467
468
469
470
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 196, 8192))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

NielsRogge's avatar
NielsRogge committed
471
472
473
474
475
476
477
478
479
    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
480
481
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
            torch_device
        )

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
506
507
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
508
509
510
511
512
513
514
515
516
517
518
519
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 21841))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
520
521
522
523
524
525
526
527
528
529
530
531
532

    @slow
    def test_inference_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

        feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
533
534
        with torch.no_grad():
            outputs = model(**inputs)
535
536
537
        logits = outputs.logits

        # verify the logits
538
        expected_shape = torch.Size((1, 150, 160, 160))
539
540
        self.assertEqual(logits.shape, expected_shape)

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")

        if is_pillow_less_than_9:
            expected_slice = torch.tensor(
                [
                    [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
                    [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
                    [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
                ],
                device=torch_device,
            )
        else:
            expected_slice = torch.tensor(
                [
                    [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
                    [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
                    [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
                ],
                device=torch_device,
            )
561
562

        self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))