"vscode:/vscode.git/clone" did not exist on "08fadc8085610f7616a993dee8109a1bdc222d58"
run_image_classification.py 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

22
import evaluate
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
    CenterCrop,
    Compose,
    Normalize,
    RandomHorizontalFlip,
    RandomResizedCrop,
    Resize,
    ToTensor,
)

import transformers
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    AutoConfig,
41
    AutoImageProcessor,
42
43
44
45
    AutoModelForImageClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
46
    set_seed,
47
48
)
from transformers.trainer_utils import get_last_checkpoint
49
from transformers.utils import check_min_version, send_example_telemetry
50
51
52
53
54
55
56
57
from transformers.utils.versions import require_version


""" Fine-tuning a 🤗 Transformers model for image classification"""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
58
check_min_version("4.28.0.dev0")
59

60
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


def pil_loader(path: str):
    with open(path, "rb") as f:
        im = Image.open(f)
        return im.convert("RGB")


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
76
77
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
78
79
80
    """

    dataset_name: Optional[str] = field(
81
82
83
84
        default=None,
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
85
86
87
88
89
90
91
92
93
94
95
96
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
    validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
101
102
103
104
105
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
109
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
110
111
112
113
        },
    )

    def __post_init__(self):
114
115
116
117
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="google/vit-base-patch16-224-in21k",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
144
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
145
146
147
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
148
            "help": (
149
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
                "with private models)."
            )
152
153
        },
    )
154
155
156
157
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178


def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    labels = torch.tensor([example["labels"] for example in examples])
    return {"pixel_values": pixel_values, "labels": labels}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

179
180
181
182
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_image_classification", model_args, data_args)

183
184
185
186
187
188
189
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

190
191
192
193
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

222
223
224
    # Set seed before initializing model.
    set_seed(training_args.seed)

225
    # Initialize our dataset and prepare it for the 'image-classification' task.
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    if data_args.dataset_name is not None:
        dataset = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            task="image-classification",
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        data_files = {}
        if data_args.train_dir is not None:
            data_files["train"] = os.path.join(data_args.train_dir, "**")
        if data_args.validation_dir is not None:
            data_files["validation"] = os.path.join(data_args.validation_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            task="image-classification",
        )
246
247

    # If we don't have a validation split, split off a percentage of train as validation.
248
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
249
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
250
251
252
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]
253
254
255

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
256
    labels = dataset["train"].features["labels"].names
257
    label2id, id2label = {}, {}
258
259
260
261
262
    for i, label in enumerate(labels):
        label2id[label] = str(i)
        id2label[str(i)] = label

    # Load the accuracy metric from the datasets package
263
    metric = evaluate.load("accuracy")
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p):
        """Computes accuracy on a batch of predictions"""
        return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        num_labels=len(labels),
        label2id=label2id,
        id2label=id2label,
        finetuning_task="image-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForImageClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
288
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
289
    )
290
291
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
292
293
294
295
296
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

297
    # Define torchvision transforms to be applied to each image.
298
299
    if "shortest_edge" in image_processor.size:
        size = image_processor.size["shortest_edge"]
amyeroberts's avatar
amyeroberts committed
300
    else:
301
302
        size = (image_processor.size["height"], image_processor.size["width"])
    normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
303
304
    _train_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
305
            RandomResizedCrop(size),
306
307
308
309
310
311
312
            RandomHorizontalFlip(),
            ToTensor(),
            normalize,
        ]
    )
    _val_transforms = Compose(
        [
amyeroberts's avatar
amyeroberts committed
313
314
            Resize(size),
            CenterCrop(size),
315
316
317
318
319
320
321
            ToTensor(),
            normalize,
        ]
    )

    def train_transforms(example_batch):
        """Apply _train_transforms across a batch."""
322
323
324
        example_batch["pixel_values"] = [
            _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]
        ]
325
326
327
328
        return example_batch

    def val_transforms(example_batch):
        """Apply _val_transforms across a batch."""
329
        example_batch["pixel_values"] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]]
330
331
        return example_batch

332
    if training_args.do_train:
333
        if "train" not in dataset:
334
335
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
336
337
338
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
339
        # Set the training transforms
340
        dataset["train"].set_transform(train_transforms)
341
342

    if training_args.do_eval:
343
        if "validation" not in dataset:
344
345
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
346
347
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
348
349
            )
        # Set the validation transforms
350
        dataset["validation"].set_transform(val_transforms)
351
352
353
354
355

    # Initalize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
356
357
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
358
        compute_metrics=compute_metrics,
359
        tokenizer=image_processor,
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "image-classification",
        "dataset": data_args.dataset_name,
387
        "tags": ["image-classification", "vision"],
388
389
390
391
392
393
394
395
396
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()