gen-card-facebook-wmt19.py 4.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#!/usr/bin/env python

# Usage:
# ./gen-card-facebook-wmt19.py

import os
from pathlib import Path

def write_model_card(model_card_dir, src_lang, tgt_lang):

    texts = {
        "en": "Machine learning is great, isn't it?",
        "ru": "Машинное обучение - это здорово, не так ли?",
        "de": "Maschinelles Lernen ist großartig, oder?",
    }

    # BLUE scores as follows:
    # "pair": [fairseq, transformers]
    scores = {
        "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"],
        "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"],
        "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"],
        "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"],
    }
    pair = f"{src_lang}-{tgt_lang}"

    readme = f"""
---
29
30
31
language: 
- {src_lang}
- {tgt_lang}
32
33
34
35
thumbnail:
tags:
- translation
- wmt19
36
- facebook
37
38
license: Apache 2.0
datasets:
39
- wmt19
40
metrics:
41
- bleu
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

# FSMT

## Model description

This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.

For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).

The abbreviation FSMT stands for FairSeqMachineTranslation

All four models are available:

* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)

## Intended uses & limitations

#### How to use

```python
from transformers.tokenization_fsmt import FSMTTokenizer
from transformers.modeling_fsmt import FSMTForConditionalGeneration
mname = "facebook/wmt19-{src_lang}-{tgt_lang}"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

72
input = "{texts[src_lang]}"
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}

```

#### Limitations and bias

- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)

## Training data

Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).

## Eval results

pair   | fairseq | transformers
-------|---------|----------
{pair}  | {scores[pair][0]} | {scores[pair][1]}

The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking

The score was calculated using this code:

```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.

116
117
118
119
## Data Sources

- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

## TODO

- port model ensemble (fairseq uses 4 model checkpoints)

"""
    os.makedirs(model_card_dir, exist_ok=True)
    path = os.path.join(model_card_dir, "README.md")
    print(f"Generating {path}")
    with open(path, "w", encoding="utf-8") as f:
        f.write(readme)

# make sure we are under the root of the project
repo_dir = Path(__file__).resolve().parent.parent.parent
model_cards_dir = repo_dir / "model_cards"

for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
    base, src_lang, tgt_lang = model_name.split("-")
    model_card_dir = model_cards_dir / "facebook" / model_name
    write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)