README.md 16.9 KB
Newer Older
1
2
## Sequence to Sequence

3
4
This directory contains examples for finetuning and evaluating transformers on summarization and translation tasks.
Please tag @sshleifer with any issues/unexpected behaviors, or send a PR!
5
For `bertabs` instructions, see [`bertabs/README.md`](bertabs/README.md).
6

7
8
9
10
11
12
13
14
15
### Supported Architectures

- `BartForConditionalGeneration` (and anything that inherits from it)
- `MarianMTModel`
- `PegasusForConditionalGeneration`
- `MBartForConditionalGeneration`
- `FSMTForConditionalGeneration`
- `T5ForConditionalGeneration`
    
16

17
18
19
## Datasets

#### XSUM:
20
21
```bash
cd examples/seq2seq
22
23
24
wget https://s3.amazonaws.com/datasets.huggingface.co/summarization/xsum.tar.gz
tar -xzvf xsum.tar.gz
export XSUM_DIR=${PWD}/xsum
25
```
Aditya Soni's avatar
Aditya Soni committed
26
this should make a directory called `xsum/` with files like `test.source`.
27
28
To use your own data, copy that files format. Each article to be summarized is on its own line.

29
#### CNN/DailyMail
30
31
```bash
cd examples/seq2seq
32
33
34
wget https://s3.amazonaws.com/datasets.huggingface.co/summarization/cnn_dm_v2.tgz
tar -xzvf cnn_dm_v2.tgz  # empty lines removed
mv cnn_cln cnn_dm
35
36
export CNN_DIR=${PWD}/cnn_dm
```
37
this should make a directory called `cnn_dm/` with 6 files.
38

39
#### WMT16 English-Romanian Translation Data:
40
download with this command:
41
```bash
42
43
44
45
wget https://s3.amazonaws.com/datasets.huggingface.co/translation/wmt_en_ro.tar.gz
tar -xzvf wmt_en_ro.tar.gz
export ENRO_DIR=${PWD}/wmt_en_ro
```
46
47
48
49
50
this should make a directory called `wmt_en_ro/` with 6 files.

#### WMT English-German:
```bash
wget https://s3.amazonaws.com/datasets.huggingface.co/translation/wmt_en_de.tgz
51
tar -xzvf wmt_en_de.tgz
52
53
54
55
export DATA_DIR=${PWD}/wmt_en_de
```

#### Private Data
56

57
If you are using your own data, it must be formatted as one directory with 6 files:
58
59
60
61
62
63
64
65
```
train.source
train.target
val.source
val.target
test.source
test.target
```
66
67
The `.source` files are the input, the `.target` files are the desired output.

68

69
70
71
### Tips and Tricks

General Tips:
72
- since you need to run from `examples/seq2seq`, and likely need to modify code, the easiest workflow is fork transformers, clone your fork, and run `pip install -e .` before you get started.
73
74
75
76
77
- try `--freeze_encoder` or `--freeze_embeds` for faster training/larger batch size.  (3hr per epoch with bs=8, see the "xsum_shared_task" command below)
- `fp16_opt_level=O1` (the default works best).
- In addition to the pytorch-lightning .ckpt checkpoint, a transformers checkpoint will be saved.
Load it with `BartForConditionalGeneration.from_pretrained(f'{output_dir}/best_tfmr)`.
- At the moment, `--do_predict` does not work in a multi-gpu setting. You need to use `evaluate_checkpoint` or the `run_eval.py` code.
78
- This warning can be safely ignored:
79
80
    > "Some weights of BartForConditionalGeneration were not initialized from the model checkpoint at facebook/bart-large-xsum and are newly initialized: ['final_logits_bias']"
- Both finetuning and eval are 30% faster with `--fp16`. For that you need to [install apex](https://github.com/NVIDIA/apex#quick-start).
81
- Read scripts before you run them!
82
83
84
85
86
87

Summarization Tips:
- (summ) 1 epoch at batch size 1 for bart-large takes 24 hours and requires 13GB GPU RAM with fp16 on an NVIDIA-V100.
- If you want to run experiments on improving the summarization finetuning process, try the XSUM Shared Task (below). It's faster to train than CNNDM because the summaries are shorter.
- For CNN/DailyMail, the default `val_max_target_length` and `test_max_target_length` will truncate the ground truth labels, resulting in slightly higher rouge scores. To get accurate rouge scores, you should rerun calculate_rouge on the `{output_dir}/test_generations.txt` file saved by `trainer.test()`
- `--max_target_length=60 --val_max_target_length=60 --test_max_target_length=100 ` is a reasonable setting for XSUM.
88
- `wandb` can be used by specifying `--logger_name wandb`. It is useful for reproducibility. Specify the environment variable `WANDB_PROJECT='hf_xsum'` to do the XSUM shared task.
89
- If you are finetuning on your own dataset, start from `distilbart-cnn-12-6` if you want long summaries and `distilbart-xsum-12-6` if you want short summaries.
90
(It rarely makes sense to start from `bart-large` unless you are a researching finetuning methods).
91

92
**Update 2018-07-18**
93
94
Datasets: `LegacySeq2SeqDataset` will be used for all tokenizers without a `prepare_seq2seq_batch` method. Otherwise, `Seq2SeqDataset` will be used.
Future work/help wanted: A new dataset to support multilingual tasks.
95

Stas Bekman's avatar
Stas Bekman committed
96

97
98
### Finetuning Scripts
All finetuning bash scripts call finetune.py (or distillation.py) with reasonable command line arguments. They usually require extra command line arguments to work.
Stas Bekman's avatar
Stas Bekman committed
99
100
101
102

To see all the possible command line options, run:

```bash
103
 ./finetune.py --help 
Stas Bekman's avatar
Stas Bekman committed
104
105
```

106
107
108
109
110
111
112
113
114
115
116
117
118
### Finetuning Training Params

To override the pretrained model's training params, you can pass them to `./finetune.sh`:

```bash
./finetune.sh \
    [...]
    --encoder_layerdrop 0.1 \
    --decoder_layerdrop 0.1 \
    --dropout 0.1 \
    --attention_dropout 0.1 \
```

119
120
121
122
123
124
125
126
127
128
### Summarization Finetuning
Run/modify `finetune.sh`

The following command should work on a 16GB GPU:
```bash
./finetune.sh \
    --data_dir $XSUM_DIR \
    --train_batch_size=1 \
    --eval_batch_size=1 \
    --output_dir=xsum_results \
129
    --num_train_epochs 6 \
130
131
132
    --model_name_or_path facebook/bart-large
```

133
134
There is a starter finetuning script for pegasus at `finetune_pegasus_xsum.sh`.

135
136
137
138
### Translation Finetuning

First, follow the wmt_en_ro download instructions.
Then you can finetune mbart_cc25 on english-romanian with the following command.
139
140
141
**Recommendation:** Read and potentially modify the fairly opinionated defaults in `train_mbart_cc25_enro.sh` script before running it.

Best performing command:
142
```bash
143
# optionally
144
export ENRO_DIR='wmt_en_ro' # Download instructions above
145
# export WANDB_PROJECT="MT" # optional
146
export MAX_LEN=128
147
export BS=4
148
./train_mbart_cc25_enro.sh --output_dir enro_finetune_baseline --label_smoothing 0.1 --fp16_opt_level=O1 --logger_name wandb --sortish_sampler
149
```
150
151
This should take < 6h/epoch on a 16GB v100 and achieve test BLEU above 26
To get results in line with fairseq, you need to do some postprocessing. (see `romanian_postprocessing.md`)
152

153
154
155
MultiGPU command
(using 8 GPUS as an example)
```bash
156
export ENRO_DIR='wmt_en_ro' # Download instructions above
157
 # export WANDB_PROJECT="MT" # optional
158
export MAX_LEN=128
159
160
161
export BS=4
./train_mbart_cc25_enro.sh --output_dir enro_finetune_baseline --gpus 8 --logger_name wandb
```
162
163
### Finetuning Outputs
As you train, `output_dir` will be filled with files, that look kind of like this (comments are mine).
164
165
166
167
168
169
170
171
172
173
174
175
Some of them are metrics, some of them are checkpoints, some of them are metadata. Here is a quick tour:

```bash
output_dir
├── best_tfmr  # this is a huggingface checkpoint generated by save_pretrained. It is the same model as the PL .ckpt file below
│   ├── config.json
│   ├── merges.txt
│   ├── pytorch_model.bin
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.json
├── git_log.json   # repo, branch, and commit hash
176
├── val_avg_rouge2=0.1984-step_count=11.ckpt  # this is a pytorch lightning checkpoint associated with the best val score. (it will be called BLEU for MT)
177
178
179
180
├── metrics.json  # new validation metrics will continually be appended to this
├── student  # this is a huggingface checkpoint generated by SummarizationDistiller. It is the student before it gets finetuned.
│   ├── config.json
│   └── pytorch_model.bin
181
182
├── test_generations.txt
# ^^ are the summaries or translations produced by your best checkpoint on the test data. Populated when training is done
183
184
185
186
187
188
189
190
191
├── test_results.txt  # a convenience file with the test set metrics. This data is also in metrics.json['test']
├── hparams.pkl  # the command line args passed after some light preprocessing. Should be saved fairly quickly.
```
After training, you can recover the best checkpoint by running
```python
from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained(f'{output_dir}/best_tfmr')
```

192
193
194
195
196
197
198
199
### Evaluation Commands

To create summaries for each article in dataset, we use `run_eval.py`, here are a few commands that run eval for different tasks and models.
If 'translation' is in your task name, the computed metric will be BLEU. Otherwise, ROUGE will be used.

For t5, you need to specify --task translation_{src}_to_{tgt} as follows:
```bash
export DATA_DIR=wmt_en_ro
200
./run_eval.py t5-base \
201
202
203
204
205
206
207
208
209
210
211
212
213
    $DATA_DIR/val.source t5_val_generations.txt \
    --reference_path $DATA_DIR/val.target \
    --score_path enro_bleu.json \
    --task translation_en_to_ro \
    --n_obs 100 \
    --device cuda \
    --fp16 \
    --bs 32
```

This command works for MBART, although the BLEU score is suspiciously low.
```bash
export DATA_DIR=wmt_en_ro
214
./run_eval.py facebook/mbart-large-en-ro $DATA_DIR/val.source mbart_val_generations.txt \
215
216
217
218
219
220
221
222
223
224
225
226
    --reference_path $DATA_DIR/val.target \
    --score_path enro_bleu.json \
    --task translation \
    --n_obs 100 \
    --device cuda \
    --fp16 \
    --bs 32
```

Summarization (xsum will be very similar):
```bash
export DATA_DIR=cnn_dm
227
./run_eval.py sshleifer/distilbart-cnn-12-6 $DATA_DIR/val.source dbart_val_generations.txt \
228
229
230
231
232
    --reference_path $DATA_DIR/val.target \
    --score_path cnn_rouge.json \
    --task summarization \
    --n_obs 100 \
    --device cuda \
233
234
    --max_source_length 1024 \
    --max_target_length 56 \
235
236
237
    --fp16 \
    --bs 32
```
238
239
240
### Multi-GPU Evalulation
here is a command to run xsum evaluation on 8 GPUS. It is more than linearly faster than run_eval.py in some cases 
because it uses SortishSampler to minimize padding. You can also use it on 1 GPU. `data_dir` must have 
241
`{type_path}.source` and `{type_path}.target`. Run `./run_distributed_eval.py --help` for all clargs.
242
243
244
245
246
247
248
249
250
251

```bash
python -m torch.distributed.launch --nproc_per_node=8  run_distributed_eval.py \
    --model_name sshleifer/distilbart-large-xsum-12-3  \
    --save_dir xsum_generations \
    --data_dir xsum \
    --fp16  # you can pass generate kwargs like num_beams here, just like run_eval.py
```

Contributions that implement this command for other distributed hardware setups are welcome!
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#### run_eval tips and tricks

When using `run_eval.py`, the following features can be useful:

* if you running the script multiple times and want to make it easier to track what arguments produced that output, use `--dump-args`. Along with the results it will also dump any custom params that were passed to the script. For example if you used: `--num_beams 8 --early_stopping true`, the output will be:
   ```
   {'bleu': 26.887, 'n_obs': 10, 'runtime': 1, 'seconds_per_sample': 0.1, 'num_beams': 8, 'early_stopping': True}
   ```

   `--info` is an additional argument available for the same purpose of tracking the conditions of the experiment. It's useful to pass things that weren't in the argument list, e.g. a language pair `--info "lang:en-ru"`. But also if you pass `--info` without a value it will fallback to the current date/time string, e.g. `2020-09-13 18:44:43`.

   If using `--dump-args --info`, the output will be:
   
   ```
   {'bleu': 26.887, 'n_obs': 10, 'runtime': 1, 'seconds_per_sample': 0.1, 'num_beams': 8, 'early_stopping': True, 'info': '2020-09-13 18:44:43'}
   ```

   If using `--dump-args --info "pair:en-ru chkpt=best`, the output will be:
   
   ```
   {'bleu': 26.887, 'n_obs': 10, 'runtime': 1, 'seconds_per_sample': 0.1, 'num_beams': 8, 'early_stopping': True, 'info': 'pair=en-ru chkpt=best'}
   ```
      

* if you need to perform a parametric search in order to find the best ones that lead to the highest BLEU score, let `run_eval_search.py` to do the searching for you.

   The script accepts the exact same arguments as `run_eval.py`, plus an additional argument `--search`. The value of `--search` is parsed, reformatted and fed to ``run_eval.py`` as additional args.

   The format for the `--search` value is a simple string with hparams and colon separated values to try, e.g.:
   ```
    --search "num_beams=5:10 length_penalty=0.8:1.0:1.2 early_stopping=true:false"
   ```
   which will generate `12` `(2*3*2)` searches for a product of each hparam. For example the example that was just used will invoke `run_eval.py` repeatedly with:
   
   ```
    --num_beams 5 --length_penalty 0.8 --early_stopping true
    --num_beams 5 --length_penalty 0.8 --early_stopping false
    [...]
    --num_beams 10 --length_penalty 1.2 --early_stopping false
   ```
   
   On completion, this function prints a markdown table of the results sorted by the best BLEU score and the winning arguments.

```
bleu  | num_beams | length_penalty | early_stopping
----- | --------- | -------------- | --------------
26.71 |         5 |            1.1 |              1
26.66 |         5 |            0.9 |              1
26.66 |         5 |            0.9 |              0
26.41 |         5 |            1.1 |              0
21.94 |         1 |            0.9 |              1
21.94 |         1 |            0.9 |              0
21.94 |         1 |            1.1 |              1
21.94 |         1 |            1.1 |              0

Best score args:
stas/wmt19-en-ru data/en-ru/val.source data/en-ru/test_translations.txt --reference_path data/en-ru/val.target --score_path data/en-ru/test_bleu.json --bs 8 --task translation --num_beams 5 --length_penalty 1.1 --early_stopping True
```

If you pass `--info "some experiment-specific info"` it will get printed before the results table - this is useful for scripting and multiple runs, so one can tell the different sets of results from each other.

314

315
### DistilBART
316
![DBART](https://huggingface.co/front/thumbnails/distilbart_large.png)
317

318
For the CNN/DailyMail dataset, (relatively longer, more extractive summaries), we found a simple technique that works:
319
you just copy alternating layers from `bart-large-cnn` and finetune more on the same data.
320
321
322
323
324

For the XSUM dataset, that didn’t work as well so we used that same initialization strategy followed by a combination of Distillbert’s ce_loss and the hidden states MSE loss used in the tinybert paper.

You can see the performance tradeoffs of model sizes [here](https://docs.google.com/spreadsheets/d/1EkhDMwVO02m8jCD1cG3RoFPLicpcL1GQHTQjfvDYgIM/edit#gid=0).
and more granular timing results [here](https://docs.google.com/spreadsheets/d/1EkhDMwVO02m8jCD1cG3RoFPLicpcL1GQHTQjfvDYgIM/edit#gid=1753259047&range=B2:I23).
325
326
327
328
329
330
331
332
333
334

#### No Teacher Distillation
To run the simpler distilbart-cnn style distillation all you need is data, a GPU, and a properly initialized student.
You don't even need `distillation.py`.

Some [un-finetuned students](https://huggingface.co/models?search=sshleifer%2Fstudent) are available for replication purposes.
They are initialized by copying layers from the associated `bart-large-{cnn|xsum}` teacher using `--init_strategy alternate`. (You can read about that in `initialization_utils.py`)
The command that produced `sshleifer/distilbart-cnn-12-6` is
```bash
./train_distilbart_cnn.sh
335
```
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
runtime: 6H on NVIDIA RTX 24GB GPU

*Note*: You can get the same simple distillation logic by using `./run_distiller.sh --no_teacher` followed by identical arguments as the ones in `train_distilbart_cnn.sh`.
If you are using `wandb` and comparing the two distillation methods, using this entry point will make your logs consistent,
because you will have the same hyperparameters logged in every run.

#### With a teacher
*Note* only BART variants are supported

In this method, we use try to enforce that the student and teacher produce similar encoder_outputs, logits, and hidden_states using `BartSummarizationDistiller`.
This is how `sshleifer/distilbart-xsum*` checkpoints were produced.

The command that produced `sshleifer/distilbart-xsum-12-6` is:

```bash
351
./train_distilbart_xsum.sh
352
353
```

354
runtime: 13H on V-100 16GB GPU.
355
356
357
358
359
360

### Contributing
- follow the standard contributing guidelines and code of conduct.
- add tests to `test_seq2seq_examples.py`
- To run only the seq2seq tests, you must be in the root of the repository and run:
```bash
361
pytest examples/seq2seq/
362
```
363
364
365
366
367
368
369
370
371
372
373


## Experimental Features 
These features are harder to use and not always useful.

###  Dynamic Batch Size for MT
`finetune.py` has a command line arg `--max_tokens_per_batch` that allows batches to be dynamically sized.
This feature can only be used:
- with fairseq installed
- on 1 GPU
- without sortish sampler
374
- after calling `./save_len_file.py $tok $data_dir`
375
376
377

For example, 
```bash
378
./save_len_file.py Helsinki-NLP/opus-mt-en-ro  wmt_en_ro
379
380
381
382
383
384
385
386
387
388
389
390
391
392
./dynamic_bs_example.sh --max_tokens_per_batch=2000 --output_dir benchmark_dynamic_bs
```
splits `wmt_en_ro/train` into 11,197 uneven lengthed batches and can finish 1 epoch in 8 minutes on a v100.

For comparison,
```bash
./dynamic_bs_example.sh --sortish_sampler --train_batch_size 48
```
uses 12,723 batches of length 48 and takes slightly more time 9.5 minutes.

The feature is still experimental, because:
+ we can make it much more robust if we have memory mapped/preprocessed datasets.
+ The speedup over sortish sampler is not that large at the moment.