"examples/vscode:/vscode.git/clone" did not exist on "c366ce10113e1024e7c5e61d56c635516909a3d8"
test_modeling_tf_ctrl.py 10.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
21
from transformers import CTRLConfig, is_tf_available
22
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
27
28
29


if is_tf_available():
patrickvonplaten's avatar
patrickvonplaten committed
30
    import tensorflow as tf
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
    from transformers.models.ctrl.modeling_tf_ctrl import (
        TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
34
        TFCTRLForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
35
36
37
        TFCTRLLMHeadModel,
        TFCTRLModel,
    )
thomwolf's avatar
thomwolf committed
38
39


40
41
class TFCTRLModelTester(object):
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
68
        self.pad_token_id = self.vocab_size - 1
69
70
71
72
73
74

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
75
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
104
            # initializer_range=self.initializer_range,
105
            pad_token_id=self.pad_token_id,
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
125
        result = model(inputs)
126
127

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
128
        result = model(inputs)
129

Sylvain Gugger's avatar
Sylvain Gugger committed
130
        result = model(input_ids)
131

132
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
133
134
135
136

    def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
137
        result = model(inputs)
138
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def create_and_check_ctrl_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFCTRLForSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


173
@require_tf
174
class TFCTRLModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
175
    all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else ()
176
    all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
177
178
179
180
181
182
183
184
185
186
    pipeline_model_mapping = (
        {
            "feature-extraction": TFCTRLModel,
            "text-classification": TFCTRLForSequenceClassification,
            "text-generation": TFCTRLLMHeadModel,
            "zero-shot": TFCTRLForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
187
    test_head_masking = False
188
    test_onnx = False
thomwolf's avatar
thomwolf committed
189

190
191
192
193
194
195
196
197
198
199
200
201
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
            # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
            # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
            # config could not be created.
            return True

        return False

thomwolf's avatar
thomwolf committed
202
    def setUp(self):
203
        self.model_tester = TFCTRLModelTester(self)
thomwolf's avatar
thomwolf committed
204
205
206
207
208
209
210
211
212
213
214
215
216
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)

217
218
219
220
    def test_ctrl_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_for_sequence_classification(*config_and_inputs)

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        list_lm_models = [TFCTRLLMHeadModel]
        list_other_models_with_output_ebd = [TFCTRLForSequenceClassification]

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in list_lm_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            elif model_class in list_other_models_with_output_ebd:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

248
    @slow
thomwolf's avatar
thomwolf committed
249
    def test_model_from_pretrained(self):
250
        for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
251
            model = TFCTRLModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
252
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
253
254


255
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
256
257
258
259
class TFCTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = TFCTRLLMHeadModel.from_pretrained("ctrl")
Patrick von Platen's avatar
Patrick von Platen committed
260
        input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32)  # Legal the president is
patrickvonplaten's avatar
patrickvonplaten committed
261
262
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
263
264
            0,
            1611,
patrickvonplaten's avatar
patrickvonplaten committed
265
            8,
Patrick von Platen's avatar
Patrick von Platen committed
266
267
268
            5,
            150,
            26449,
patrickvonplaten's avatar
patrickvonplaten committed
269
            2,
Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
            19,
            348,
            469,
patrickvonplaten's avatar
patrickvonplaten committed
273
            3,
Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
277
278
279
280
281
282
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
patrickvonplaten's avatar
patrickvonplaten committed
283
284

        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
285
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)