README.md 1.8 KB
Newer Older
1
### Get the CNN Data
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
To be able to reproduce the authors' results on the CNN/Daily Mail dataset you first need to download both CNN and Daily Mail datasets [from Kyunghyun Cho's website](https://cs.nyu.edu/~kcho/DMQA/) (the links next to "Stories") in the same folder. Then uncompress the archives by running:

```bash
tar -xvf cnn_stories.tgz && tar -xvf dailymail_stories.tgz
```
this should make a directory called cnn_dm/ with files like `test.source`. 
To use your own data, copy that files format. Each article to be summarized is on its own line.

### Usage
To create summaries for each article in dataset, run:
```bash
python evaluate_cnn.py <path_to_test.source> cnn_test_summaries.txt
```
the default batch size, 8, fits in 16GB GPU memory, but may need to be adjusted to fit your system.

### Where is the code?
The core model is in `src/transformers/modeling_bart.py`. This directory only contains examples.

### (WIP) Rouge Scores

### Stanford CoreNLP Setup
```
ptb_tokenize () {
    cat $1 | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > $2
}

sudo apt install openjdk-8-jre-headless
sudo apt-get install ant
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip
unzip stanford-corenlp-full-2018-10-05.zip
cd stanford-corenlp-full-2018-10-05
export CLASSPATH=stanford-corenlp-3.9.2.jar:stanford-corenlp-3.9.2-models.jar
```
35
Then run `ptb_tokenize` on `test.target` and your generated hypotheses.
36
37
38
39
40
41
42
43
44
45
46
### Rouge Setup
Install `files2rouge` following the instructions at [here](https://github.com/pltrdy/files2rouge).
I also needed to run `sudo apt-get install libxml-parser-perl`

```python
from files2rouge import files2rouge
from files2rouge import settings
files2rouge.run(<path_to_tokenized_hypo>,
                <path_to_tokenized_target>,
               saveto='rouge_output.txt')
```