"test/srt/vscode:/vscode.git/clone" did not exist on "0103f374ba47c7baa87f9378b0ba3ef6c282969d"
test_modeling_mixtral.py 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Mixtral model. """


import tempfile
import unittest

import pytest

from transformers import MixtralConfig, is_torch_available
from transformers.testing_utils import (
25
    is_flaky,
26
27
28
    require_flash_attn,
    require_torch,
    require_torch_gpu,
29
    require_torch_sdpa,
30
31
32
33
34
35
36
37
38
39
40
41
42
    slow,
    torch_device,
)

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

43
    from transformers import MixtralForCausalLM, MixtralForSequenceClassification, MixtralModel
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


class MixtralModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_key_value_heads=2,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        pad_token_id=0,
        scope=None,
73
        router_jitter_noise=0.1,
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.pad_token_id = pad_token_id
        self.scope = scope
99
        self.router_jitter_noise = router_jitter_noise
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    # Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return MixtralConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            num_key_value_heads=self.num_key_value_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
            num_experts_per_tok=2,
            num_local_experts=2,
143
            router_jitter_noise=self.router_jitter_noise,
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        )

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Mixtral
    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MixtralModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mixtral
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = MixtralModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mixtral
    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MixtralForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mixtral
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = MixtralForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Mixtral
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTest with Mistral->Mixtral
class MixtralModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (MixtralModel, MixtralForCausalLM, MixtralForSequenceClassification) if is_torch_available() else ()
    )
    all_generative_model_classes = (MixtralForCausalLM,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "feature-extraction": MixtralModel,
            "text-classification": MixtralForSequenceClassification,
            "text-generation": MixtralForCausalLM,
            "zero-shot": MixtralForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_headmasking = False
    test_pruning = False

    # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

312
313
314
315
316
317
318
    # TODO: @Fxmarty
    @is_flaky(max_attempts=3, description="flaky on some models.")
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        super().test_eager_matches_sdpa_generate()

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    def setUp(self):
        self.model_tester = MixtralModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MixtralConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_Mixtral_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        print(config)
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = MixtralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Mixtral_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = MixtralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Mixtral_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = MixtralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    @unittest.skip("Mixtral buffers include complex numbers, which breaks this test")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip("Mixtral uses GQA on all models so the KV cache is a non standard format")
    def test_past_key_values_format(self):
        pass

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        import torch

        for model_class in self.all_generative_model_classes:
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )

                dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
                dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)

                model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                with self.assertRaises(ValueError):
                    _ = model.generate(
                        dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                    )

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_use_cache(self):
        import torch

        max_new_tokens = 30

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # NOTE: Mixtral apparently does not support right padding + use_cache with FA2.
                dummy_attention_mask[:, -1] = 1

                model = model_class.from_pretrained(
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
                ).to(torch_device)

                # Just test that a large cache works as expected
                _ = model.generate(
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
                )

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
Yoach Lacombe's avatar
Yoach Lacombe committed
468
    def test_flash_attn_2_inference_equivalence_right_padding(self):
469
470
471
472
473
474
475
476
477
        self.skipTest("Mixtral flash attention does not support right padding")

    # Ignore copy
    def test_load_balancing_loss(self):
        r"""
        Let's make sure we can actually compute the loss and do a backward on it.
        """
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
Arthur's avatar
Arthur committed
478
        config.num_local_experts = 8
479
480
481
482
483
484
485
        config.output_router_logits = True
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = MixtralForCausalLM(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask)
Arthur's avatar
Arthur committed
486
        self.assertEqual(result.router_logits[0].shape, (91, config.num_local_experts))
487
        torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        # First, we make sure that adding padding tokens doesn't change the loss
        # loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
        pad_length = 1000
        # Add padding tokens (assume that pad_token_id=1) to input_ids
        padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device)
        padded_input_ids = torch.cat((padding_block, input_ids), dim=1)  # this is to simulate padding to the left
        padded_attention_mask = padded_input_ids.ne(1).to(torch_device)

        padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
        torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)

        # We make sure that the loss of includding padding tokens != the loss without padding tokens
        # if attention_mask=None --> we don't exclude padding tokens
        include_padding_result = model(padded_input_ids, attention_mask=None)

        # This is to mimic torch.testing.assert_not_close
        self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

@require_torch
class MixtralIntegrationTest(unittest.TestCase):
    @slow
    @require_torch_gpu
    def test_small_model_logits(self):
        model_id = "hf-internal-testing/Mixtral-tiny"
        dummy_input = torch.LongTensor([[0, 1, 0], [0, 1, 0]]).to(torch_device)

        model = MixtralForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True).to(
            torch_device
        )
        # TODO: might need to tweak it in case the logits do not match on our daily runners
        # these logits have been obtained with the original megablocks impelmentation.
        EXPECTED_LOGITS = torch.Tensor(
            [[0.1670, 0.1620, 0.6094], [-0.8906, -0.1588, -0.6060], [0.1572, 0.1290, 0.7246]]
        ).to(torch_device)

        with torch.no_grad():
            logits = model(dummy_input).logits

        torch.testing.assert_close(logits[0, :3, :3].half(), EXPECTED_LOGITS, atol=1e-3, rtol=1e-3)
        torch.testing.assert_close(logits[1, :3, :3].half(), EXPECTED_LOGITS, atol=1e-3, rtol=1e-3)

    @slow
    # @require_torch_gpu
    def test_small_model_logits_batched(self):
        model_id = "hf-internal-testing/Mixtral-tiny"
        dummy_input = torch.LongTensor([[0, 0, 0, 0, 0, 0, 1, 2, 3], [1, 1, 2, 3, 4, 5, 6, 7, 8]]).to(torch_device)
        attention_mask = dummy_input.ne(0).to(torch.long)

        model = MixtralForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True).to(
            torch_device
        )

        # TODO: might need to tweak it in case the logits do not match on our daily runners
        EXPECTED_LOGITS_LEFT = torch.Tensor(
            [[0.1750, 0.0537, 0.7007], [0.1750, 0.0537, 0.7007], [0.1750, 0.0537, 0.7007]],
        )

        # logits[0, -3:, -3:].half()
        EXPECTED_LOGITS_LEFT_UNPADDED = torch.Tensor(
            [[0.2212, 0.5200, -0.3816], [0.8213, -0.2313, 0.6069], [0.2664, -0.7090, 0.2468]],
        )

        # logits[1, -3:, -3:].half()
        EXPECTED_LOGITS_RIGHT_UNPADDED = torch.Tensor(
            [[0.2205, 0.1232, -0.1611], [-0.3484, 0.3030, -1.0312], [0.0742, 0.7930, 0.7969]]
        )

        with torch.no_grad():
            logits = model(dummy_input, attention_mask=attention_mask).logits

        torch.testing.assert_close(logits[0, :3, :3].half(), EXPECTED_LOGITS_LEFT, atol=1e-3, rtol=1e-3)
        torch.testing.assert_close(logits[0, -3:, -3:].half(), EXPECTED_LOGITS_LEFT_UNPADDED, atol=1e-3, rtol=1e-3)
        torch.testing.assert_close(logits[1, -3:, -3:].half(), EXPECTED_LOGITS_RIGHT_UNPADDED, atol=1e-3, rtol=1e-3)