test_pipelines_automatic_speech_recognition.py 50.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
18
import pytest
19
from datasets import load_dataset
20

21
from huggingface_hub import snapshot_download
22
23
24
25
from transformers import (
    MODEL_FOR_CTC_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    AutoFeatureExtractor,
26
    AutoProcessor,
27
28
29
    AutoTokenizer,
    Speech2TextForConditionalGeneration,
    Wav2Vec2ForCTC,
Arthur's avatar
Arthur committed
30
31
    WhisperForConditionalGeneration,
    WhisperProcessor,
32
)
33
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
34
from transformers.pipelines.audio_utils import chunk_bytes_iter
35
from transformers.pipelines.automatic_speech_recognition import _find_timestamp_sequence, chunk_iter
36
37
38
from transformers.testing_utils import (
    is_torch_available,
    nested_simplify,
Nicolas Patry's avatar
Nicolas Patry committed
39
    require_pyctcdecode,
40
41
42
43
44
    require_tf,
    require_torch,
    require_torchaudio,
    slow,
)
45
46

from .test_pipelines_common import ANY, PipelineTestCaseMeta
47
48


49
50
51
52
if is_torch_available():
    import torch


53
# We can't use this mixin because it assumes TF support.
54
55
56
# from .test_pipelines_common import CustomInputPipelineCommonMixin


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = {
        k: v
        for k, v in (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
        + (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
    }

    def get_test_pipeline(self, model, tokenizer, feature_extractor):
        if tokenizer is None:
            # Side effect of no Fast Tokenizer class for these model, so skipping
            # But the slow tokenizer test should still run as they're quite small
            self.skipTest("No tokenizer available")
            return
            # return None, None

        speech_recognizer = AutomaticSpeechRecognitionPipeline(
            model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
        )

        # test with a raw waveform
        audio = np.zeros((34000,))
        audio2 = np.zeros((14000,))
        return speech_recognizer, [audio, audio2]

    def run_pipeline_test(self, speech_recognizer, examples):
        audio = np.zeros((34000,))
        outputs = speech_recognizer(audio)
        self.assertEqual(outputs, {"text": ANY(str)})

86
        # Striding
87
88
89
90
        audio = {"raw": audio, "stride": (0, 4000), "sampling_rate": speech_recognizer.feature_extractor.sampling_rate}
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
91
92
93
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
94
95
96
97
98
        else:
            # Non CTC models cannot use striding.
            with self.assertRaises(ValueError):
                outputs = speech_recognizer(audio)

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        # Timestamps
        audio = np.zeros((34000,))
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio, return_timestamps="char")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )

            outputs = speech_recognizer(audio, return_timestamps="word")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )
123
124
125
126
127
128
129
130
131
132
133
134
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio, return_timestamps=True)
            self.assertIsInstance(outputs["chunks"], list)
            nb_chunks = len(outputs["chunks"])
            self.assertGreaterThan(nb_chunks, 0)
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(nb_chunks)],
                },
            )
135
136
        else:
            # Non CTC models cannot use return_timestamps
137
            with self.assertRaisesRegex(ValueError, "^We cannot return_timestamps yet on non-ctc models !$"):
138
139
                outputs = speech_recognizer(audio, return_timestamps="char")

140
141
142
143
144
145
    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline("automatic-speech-recognition", framework="pt")

    @require_torch
146
    def test_small_model_pt(self):
147
148
149
150
151
152
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-small-mustc-en-fr-st",
            tokenizer="facebook/s2t-small-mustc-en-fr-st",
            framework="pt",
        )
153
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
154
        output = speech_recognizer(waveform)
155
        self.assertEqual(output, {"text": "(Applaudissements)"})
156
157
        output = speech_recognizer(waveform, chunk_length_s=10)
        self.assertEqual(output, {"text": "(Applaudissements)"})
158
159

        # Non CTC models cannot use return_timestamps
160
161
162
        with self.assertRaisesRegex(
            ValueError, "^We cannot return_timestamps yet on non-ctc models apart from Whisper !$"
        ):
163
            _ = speech_recognizer(waveform, return_timestamps="char")
164

165
166
167
168
169
170
171
172
173
174
175
176
177
    @slow
    @require_torch
    def test_whisper_fp16(self):
        if not torch.cuda.is_available():
            self.skipTest("Cuda is necessary for this test")
        speech_recognizer = pipeline(
            model="openai/whisper-base",
            device=0,
            torch_dtype=torch.float16,
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        speech_recognizer(waveform)

178
179
180
    @require_torch
    def test_small_model_pt_seq2seq(self):
        speech_recognizer = pipeline(
181
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
182
183
184
185
186
187
188
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": "あл ش 湯 清 ه ܬ া लᆨしث ल eか u w 全 u"})

189
190
191
192
193
194
195
196
197
198
199
    @require_torch
    def test_small_model_pt_seq2seq_gen_kwargs(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform, max_new_tokens=10, generate_kwargs={"num_beams": 2})
        self.assertEqual(output, {"text": "あл † γ ت ב オ 束 泣 足"})

Nicolas Patry's avatar
Nicolas Patry committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    @slow
    @require_torch
    @require_pyctcdecode
    def test_large_model_pt_with_lm(self):
        dataset = load_dataset("Narsil/asr_dummy")
        filename = dataset["test"][3]["file"]

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm",
            framework="pt",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        output = speech_recognizer(filename)
        self.assertEqual(
            output,
            {"text": "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumaje"},
        )

        # Override back to pure CTC
        speech_recognizer.type = "ctc"
        output = speech_recognizer(filename)
        # plumajre != plumaje
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajre"
                )
Nicolas Patry's avatar
Nicolas Patry committed
230
231
232
            },
        )

233
234
235
236
237
238
        speech_recognizer.type = "ctc_with_lm"
        # Simple test with CTC with LM, chunking + timestamps
        output = speech_recognizer(filename, chunk_length_s=2.0, return_timestamps="word")
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
239
240
241
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajcri"
                ),
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
                "chunks": [
                    {"text": "y", "timestamp": (0.52, 0.54)},
                    {"text": "en", "timestamp": (0.6, 0.68)},
                    {"text": "las", "timestamp": (0.74, 0.84)},
                    {"text": "ramas", "timestamp": (0.94, 1.24)},
                    {"text": "medio", "timestamp": (1.32, 1.52)},
                    {"text": "sumergidas", "timestamp": (1.56, 2.22)},
                    {"text": "revoloteaban", "timestamp": (2.36, 3.0)},
                    {"text": "algunos", "timestamp": (3.06, 3.38)},
                    {"text": "pájaros", "timestamp": (3.46, 3.86)},
                    {"text": "de", "timestamp": (3.92, 4.0)},
                    {"text": "quimérico", "timestamp": (4.08, 4.6)},
                    {"text": "y", "timestamp": (4.66, 4.68)},
                    {"text": "legendario", "timestamp": (4.74, 5.26)},
                    {"text": "plumajcri", "timestamp": (5.34, 5.74)},
                ],
            },
        )

261
262
263
264
    @require_tf
    def test_small_model_tf(self):
        self.skipTest("Tensorflow not supported yet.")

265
266
267
    @require_torch
    def test_torch_small_no_tokenizer_files(self):
        # test that model without tokenizer file cannot be loaded
268
        with pytest.raises(OSError):
269
270
            pipeline(
                task="automatic-speech-recognition",
271
                model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
272
273
274
                framework="pt",
            )

275
276
277
278
279
280
281
282
283
284
    @require_torch
    @slow
    def test_torch_large(self):

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-base-960h",
            tokenizer="facebook/wav2vec2-base-960h",
            framework="pt",
        )
285
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
286
287
288
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": ""})

Patrick von Platen's avatar
Patrick von Platen committed
289
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
290
        filename = ds[40]["file"]
291
292
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    @require_torch
    @slow
    def test_torch_whisper(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        output = speech_recognizer([filename], chunk_length_s=5, batch_size=4)
        self.assertEqual(output, [{"text": " A man said to the universe, Sir, I exist."}])

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    @slow
    def test_find_longest_common_subsequence(self):
        max_source_positions = 1500
        processor = AutoProcessor.from_pretrained("openai/whisper-tiny")

        previous_sequence = [[51492, 406, 3163, 1953, 466, 13, 51612, 51612]]
        self.assertEqual(
            processor.decode(previous_sequence[0], output_offsets=True),
            {
                "text": " not worth thinking about.",
                "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
            },
        )

        # Merge when the previous sequence is a suffix of the next sequence
        # fmt: off
        next_sequences_1 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        self.assertEqual(
            processor.decode(next_sequences_1[0], output_offsets=True),
            {
                "text": (
                    " of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
                    " small, sharp blow high on his chest.<|endoftext|>"
                ),
                "offsets": [
                    {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (5.0, 9.4),
                    },
                ],
            },
        )
        merge = _find_timestamp_sequence(
347
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_1, (480_000, 120_000, 0)]],
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )

        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51739, 51739, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 27.5)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (27.5, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the sequence is in the middle of the 1st next sequence
        # fmt: off
        next_sequences_2 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        # {'text': ' of spectators, retrievality is not worth thinking about. His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
384
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_2, (480_000, 120_000, 0)]],
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {
                        "text": (
                            " not worth thinking about. His instant panic was followed by a small, sharp blow high on"
                            " his chest."
                        ),
                        "timestamp": (22.56, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the previous sequence is not included in the current sequence
        # fmt: off
        next_sequences_3 = [[50364, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50584, 50257]]
        # fmt: on
        # {'text': ' His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
420
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 120_000, 0)]],
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51832],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (24.96, 29.36),
                    },
                ],
            },
        )
        # last case is when the sequence is not in the first next predicted start and end of timestamp
        # fmt: off
        next_sequences_3 = [
450
            [50364, 2812, 9836, 14783, 390, 406, 3163, 1953, 466, 13, 50634, 50634, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50934]
451
452
453
        ]
        # fmt: on
        merge = _find_timestamp_sequence(
454
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 167_000, 0)]],
455
456
457
458
459
460
461
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
462
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51912]
463
464
465
466
467
468
469
470
471
472
473
474
475
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
476
                        "timestamp": (24.96, 30.96),
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
                    },
                ],
            },
        )

    @slow
    @require_torch
    def test_whisper_timestamp_prediction(self):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        array = np.concatenate(
            [ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
        )
        pipe = pipeline(
            model="openai/whisper-small",
            return_timestamps=True,
        )

        output = pipe(ds[40]["audio"])
        self.assertDictEqual(
            output,
            {
                "text": " A man said to the universe, Sir, I exist.",
                "chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.26)}],
            },
        )
        pipe = pipeline(
            model="openai/whisper-small",
            return_timestamps=True,
        )

        output = pipe(array, chunk_length_s=10)
        self.assertDictEqual(
            output,
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment he wore, the "
                            "cut"
                        ),
                        "timestamp": (5.5, 11.94),
                    },
                    {
                        "text": (
                            " on his chest still dripping blood, the ache of his "
                            "overstrained eyes, even the soaring arena around him "
                            "with"
                        ),
                        "timestamp": (11.94, 19.6),
                    },
                    {
                        "text": " the thousands of spectators, retrievality is not worth thinking about.",
                        "timestamp": (19.6, 24.98),
                    },
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (24.98, 30.98),
                    },
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore, the cut on his chest still dripping blood, the ache of his "
                    "overstrained eyes, even the soaring arena around him with the "
                    "thousands of spectators, retrievality is not worth thinking about. "
                    "His instant panic was followed by a small, sharp blow high on his "
                    "chest."
                ),
            },
        )

        output = pipe(array)
        self.assertDictEqual(
            output,
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment"
                        ),
                        "timestamp": (5.5, 10.18),
                    },
                    {"text": " he wore.", "timestamp": (10.18, 11.68)},
                    {"text": " The cut on his chest still dripping blood.", "timestamp": (11.68, 14.92)},
                    {"text": " The ache of his overstrained eyes.", "timestamp": (14.92, 17.6)},
                    {
                        "text": (
                            " Even the soaring arena around him with the thousands of spectators were trivialities"
                        ),
                        "timestamp": (17.6, 22.56),
                    },
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore. The cut on his chest still dripping blood. The ache of his "
                    "overstrained eyes. Even the soaring arena around him with the "
                    "thousands of spectators were trivialities not worth thinking about."
                ),
            },
        )

584
585
586
587
588
589
590
591
592
593
    @require_torch
    @slow
    def test_torch_speech_encoder_decoder(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-wav2vec2-large-en-de",
            feature_extractor="facebook/s2t-wav2vec2-large-en-de",
            framework="pt",
        )

Patrick von Platen's avatar
Patrick von Platen committed
594
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
595
        filename = ds[40]["file"]
596
597
598
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})

599
600
601
602
603
604
605
606
607
    @slow
    @require_torch
    def test_simple_wav2vec2(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

608
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
609
610
611
        output = asr(waveform)
        self.assertEqual(output, {"text": ""})

Patrick von Platen's avatar
Patrick von Platen committed
612
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
613
        filename = ds[40]["file"]
614
615
616
        output = asr(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

617
        filename = ds[40]["file"]
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

    @slow
    @require_torch
    @require_torchaudio
    def test_simple_s2t(self):

        model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

634
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
635
636

        output = asr(waveform)
637
        self.assertEqual(output, {"text": "(Applausi)"})
638

Patrick von Platen's avatar
Patrick von Platen committed
639
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
640
        filename = ds[40]["file"]
641
642
643
        output = asr(filename)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})

644
        filename = ds[40]["file"]
645
646
647
648
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
649

Arthur's avatar
Arthur committed
650
651
652
653
654
655
656
657
658
659
660
661
    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_asr(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny.en",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = speech_recognizer(filename)
662
663
664
665
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
        )
Arthur's avatar
Arthur committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_translation(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-large",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
        tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large")
        feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-large")

        speech_recognizer_2 = AutomaticSpeechRecognitionPipeline(
            model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
        )
        output_2 = speech_recognizer_2(filename)
        self.assertEqual(output, output_2)

        processor = WhisperProcessor(feature_extractor, tokenizer)
        model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(task="transcribe", language="it")
        speech_translator = AutomaticSpeechRecognitionPipeline(
            model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
        )
        output_3 = speech_translator(filename)
Arthur's avatar
Arthur committed
697
        self.assertEqual(output_3, {"text": " Un uomo ha detto all'universo, Sir, esiste."})
Arthur's avatar
Arthur committed
698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    @slow
    @require_torch
    @require_torchaudio
    def test_xls_r_to_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-21-to-en",
            feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en",
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."})

    @slow
    @require_torch
    @require_torchaudio
    def test_xls_r_from_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-en-to-15",
            feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15",
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."})
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

    @slow
    @require_torch
    @require_torchaudio
    def test_speech_to_text_leveraged(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-2-bart-base",
            feature_extractor="patrickvonplaten/wav2vec2-2-bart-base",
            tokenizer=AutoTokenizer.from_pretrained("patrickvonplaten/wav2vec2-2-bart-base"),
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
745

746
747
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "a man said to the universe sir i exist"})
748

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    @require_torch
    def test_chunking_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
            chunk_length_s=10.0,
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "ZBT ZC")

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    @require_torch
    def test_return_timestamps_ctc_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        # Take short audio to keep the test readable
        audio = ds[40]["audio"]["array"][:800]

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": " ", "timestamp": (0.0, 0.012)},
                    {"text": "Z", "timestamp": (0.012, 0.016)},
                    {"text": "B", "timestamp": (0.016, 0.02)},
                    {"text": "T", "timestamp": (0.02, 0.024)},
                    {"text": " ", "timestamp": (0.024, 0.028)},
                    {"text": "Z", "timestamp": (0.028, 0.032)},
                    {"text": "X", "timestamp": (0.032, 0.036)},
                    {"text": " ", "timestamp": (0.036, 0.04)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": "ZBT", "timestamp": (0.012, 0.024)},
                    {"text": "ZX", "timestamp": (0.028, 0.036)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
    @require_torch
    @require_pyctcdecode
    def test_chunking_fast_with_lm(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
            chunk_length_s=10.0,
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        # Batch_size = 1
        output1 = speech_recognizer([audio_tiled], batch_size=1)
        self.assertEqual(output1, [{"text": ANY(str)}])
        self.assertEqual(output1[0]["text"][:6], "<s> <s")

        # batch_size = 2
        output2 = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output2, [{"text": ANY(str)}])
        self.assertEqual(output2[0]["text"][:6], "<s> <s")

        # TODO There is an offby one error because of the ratio.
        # Maybe logits get affected by the padding on this random
        # model is more likely. Add some masking ?
        # self.assertEqual(output1, output2)

837
838
839
840
841
842
843
844
845
846
847
848
849
    @require_torch
    @require_pyctcdecode
    def test_with_lm_fast(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
850

851
852
853
854
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

855
856
857
858
859
860
861
862
        # Making sure the argument are passed to the decoder
        # Since no change happens in the result, check the error comes from
        # the `decode_beams` function.
        with self.assertRaises(TypeError) as e:
            output = speech_recognizer([audio_tiled], decoder_kwargs={"num_beams": 2})
            self.assertContains(e.msg, "TypeError: decode_beams() got an unexpected keyword argument 'num_beams'")
        output = speech_recognizer([audio_tiled], decoder_kwargs={"beam_width": 2})

863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    @require_torch
    @require_pyctcdecode
    def test_with_local_lm_fast(self):
        local_dir = snapshot_download("hf-internal-testing/processor_with_lm")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=local_dir,
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)

        output = speech_recognizer([audio_tiled], batch_size=2)

        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

884
885
    @require_torch
    @slow
886
    def test_chunking_and_timestamps(self):
887
888
889
890
891
892
893
894
895
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            framework="pt",
896
            chunk_length_s=10.0,
897
898
899
900
901
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

902
        n_repeats = 10
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ("A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats).strip()}])

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(audio.shape, (74_400,))
        self.assertEqual(speech_recognizer.feature_extractor.sampling_rate, 16_000)
        # The audio is 74_400 / 16_000 = 4.65s long.
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": " ", "timestamp": (0.62, 0.66)},
                    {"text": "M", "timestamp": (0.68, 0.7)},
                    {"text": "A", "timestamp": (0.78, 0.8)},
                    {"text": "N", "timestamp": (0.84, 0.86)},
                    {"text": " ", "timestamp": (0.92, 0.98)},
                    {"text": "S", "timestamp": (1.06, 1.08)},
                    {"text": "A", "timestamp": (1.14, 1.16)},
                    {"text": "I", "timestamp": (1.16, 1.18)},
                    {"text": "D", "timestamp": (1.2, 1.24)},
                    {"text": " ", "timestamp": (1.24, 1.28)},
                    {"text": "T", "timestamp": (1.28, 1.32)},
                    {"text": "O", "timestamp": (1.34, 1.36)},
                    {"text": " ", "timestamp": (1.38, 1.42)},
                    {"text": "T", "timestamp": (1.42, 1.44)},
                    {"text": "H", "timestamp": (1.44, 1.46)},
                    {"text": "E", "timestamp": (1.46, 1.5)},
                    {"text": " ", "timestamp": (1.5, 1.56)},
                    {"text": "U", "timestamp": (1.58, 1.62)},
                    {"text": "N", "timestamp": (1.64, 1.68)},
                    {"text": "I", "timestamp": (1.7, 1.72)},
                    {"text": "V", "timestamp": (1.76, 1.78)},
                    {"text": "E", "timestamp": (1.84, 1.86)},
                    {"text": "R", "timestamp": (1.86, 1.9)},
                    {"text": "S", "timestamp": (1.96, 1.98)},
                    {"text": "E", "timestamp": (1.98, 2.02)},
                    {"text": " ", "timestamp": (2.02, 2.06)},
                    {"text": "S", "timestamp": (2.82, 2.86)},
                    {"text": "I", "timestamp": (2.94, 2.96)},
                    {"text": "R", "timestamp": (2.98, 3.02)},
                    {"text": " ", "timestamp": (3.06, 3.12)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": " ", "timestamp": (3.58, 3.6)},
                    {"text": "E", "timestamp": (3.66, 3.68)},
                    {"text": "X", "timestamp": (3.68, 3.7)},
                    {"text": "I", "timestamp": (3.9, 3.92)},
                    {"text": "S", "timestamp": (3.94, 3.96)},
                    {"text": "T", "timestamp": (4.0, 4.02)},
                    {"text": " ", "timestamp": (4.06, 4.1)},
                ],
            },
        )
        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.28, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.5)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    {"text": "SIR", "timestamp": (2.82, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
        output = speech_recognizer(audio, return_timestamps="word", chunk_length_s=2.0)
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.3, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.48)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    # Tiny change linked to chunking.
                    {"text": "SIR", "timestamp": (2.84, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
995

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    @require_torch
    @slow
    def test_chunking_with_lm(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-base-100h-with-lm",
            chunk_length_s=10.0,
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 10
        audio = np.tile(audio, n_repeats)
        output = speech_recognizer([audio], batch_size=2)
        expected_text = "A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats
        expected = [{"text": expected_text.strip()}]
        self.assertEqual(output, expected)

1014
1015
1016
1017
    @require_torch
    def test_chunk_iterator(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
1018
1019
        ratio = 1
        outs = list(chunk_iter(inputs, feature_extractor, 100, 0, 0, ratio))
1020
1021
1022
1023
1024
1025
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

        # two chunks no stride
1026
        outs = list(chunk_iter(inputs, feature_extractor, 50, 0, 0, ratio))
1027
1028
1029
1030
1031
1032
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(50, 0, 0), (50, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 50), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

        # two chunks incomplete last
1033
        outs = list(chunk_iter(inputs, feature_extractor, 80, 0, 0, ratio))
1034
1035
1036
1037
1038
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 0), (20, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1039
1040
1041
1042
1043
        # one chunk since first is also last, because it contains only data
        # in the right strided part we just mark that part as non stride
        # This test is specifically crafted to trigger a bug if next chunk
        # would be ignored by the fact that all the data would be
        # contained in the strided left data.
1044
        outs = list(chunk_iter(inputs, feature_extractor, 105, 5, 5, ratio))
1045
1046
1047
1048
1049
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

1050
1051
1052
1053
1054
1055
1056
    @require_torch
    def test_chunk_iterator_stride(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1057
1058
        ratio = 1
        outs = list(chunk_iter(inputs, feature_extractor, 100, 20, 10, ratio))
1059
1060
1061
1062
1063
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 10), (30, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100), (1, 30)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1064
        outs = list(chunk_iter(inputs, feature_extractor, 80, 20, 10, ratio))
1065
1066
1067
1068
1069
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 10), (50, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1070
        outs = list(chunk_iter(inputs, feature_extractor, 90, 20, 0, ratio))
1071
1072
1073
1074
1075
1076
1077
1078
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(90, 0, 0), (30, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 90), (1, 30)])

        inputs = torch.LongTensor([i % 2 for i in range(100)])
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1079
        outs = list(chunk_iter(inputs, feature_extractor, 30, 5, 5, ratio))
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        self.assertEqual(len(outs), 5)
        self.assertEqual([o["stride"] for o in outs], [(30, 0, 5), (30, 5, 5), (30, 5, 5), (30, 5, 5), (20, 5, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 30), (1, 30), (1, 30), (1, 30), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, False, False, False, True])
        # (0, 25)
        self.assertEqual(nested_simplify(input_values[:, :30]), nested_simplify(outs[0]["input_values"]))
        # (25, 45)
        self.assertEqual(nested_simplify(input_values[:, 20:50]), nested_simplify(outs[1]["input_values"]))
        # (45, 65)
        self.assertEqual(nested_simplify(input_values[:, 40:70]), nested_simplify(outs[2]["input_values"]))
        # (65, 85)
        self.assertEqual(nested_simplify(input_values[:, 60:90]), nested_simplify(outs[3]["input_values"]))
        # (85, 100)
        self.assertEqual(nested_simplify(input_values[:, 80:100]), nested_simplify(outs[4]["input_values"]))

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    @require_torch
    def test_stride(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 10)
        output = speech_recognizer({"raw": waveform, "stride": (0, 0), "sampling_rate": 16_000})
        self.assertEqual(output, {"text": "OB XB  B EB BB  B EB B OB X"})

        # 0 effective ids Just take the middle one
        output = speech_recognizer({"raw": waveform, "stride": (5000, 5000), "sampling_rate": 16_000})
1107
        self.assertEqual(output, {"text": ""})
1108
1109
1110

        # Only 1 arange.
        output = speech_recognizer({"raw": waveform, "stride": (0, 9000), "sampling_rate": 16_000})
1111
        self.assertEqual(output, {"text": "OB"})
1112
1113
1114

        # 2nd arange
        output = speech_recognizer({"raw": waveform, "stride": (1000, 8000), "sampling_rate": 16_000})
1115
        self.assertEqual(output, {"text": "XB"})
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191


def require_ffmpeg(test_case):
    """
    Decorator marking a test that requires FFmpeg.

    These tests are skipped when FFmpeg isn't installed.

    """
    import subprocess

    try:
        subprocess.check_output(["ffmpeg", "-h"], stderr=subprocess.DEVNULL)
        return test_case
    except Exception:
        return unittest.skip("test requires ffmpeg")(test_case)


def bytes_iter(chunk_size, chunks):
    for i in range(chunks):
        yield bytes(range(i * chunk_size, (i + 1) * chunk_size))


@require_ffmpeg
class AudioUtilsTest(unittest.TestCase):
    def test_chunk_bytes_iter_too_big(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 10, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0)})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(1, 1)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x01\x02\x03", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x02\x03\x04", "stride": (1, 1)})
        # This is finished, but the chunk_bytes doesn't know it yet.
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x04\x05", "stride": (1, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride_stream(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05\x06\x07", "stride": (1, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x06\x07\x08", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 10, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0), "partial": True})
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": True}
        )
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": False}
        )
        with self.assertRaises(StopIteration):
            next(iter_)