run_lm_finetuning.py 27.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26
27

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
28
import pickle
29
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
30
31
import re
import shutil
32
33
34

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
35
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
36
37
38
39
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange

40
from transformers import (WEIGHTS_NAME, AdamW, WarmupLinearSchedule,
41
42
43
                                  BertConfig, BertForMaskedLM, BertTokenizer,
                                  GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
                                  OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
44
45
                                  RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
                                  DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
46

47

48
logger = logging.getLogger(__name__)
49
50
51


MODEL_CLASSES = {
52
    'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
53
    'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
54
    'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
55
56
    'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
    'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
57
58
59
}


60
61
62
63
class TextDataset(Dataset):
    def __init__(self, tokenizer, file_path='train', block_size=512):
        assert os.path.isfile(file_path)
        directory, filename = os.path.split(file_path)
64
        cached_features_file = os.path.join(directory, 'cached_lm_' + block_size + '_' + filename)
65
66
67
68
69
70
71
72
73
74
75
76
77

        if os.path.exists(cached_features_file):
            logger.info("Loading features from cached file %s", cached_features_file)
            with open(cached_features_file, 'rb') as handle:
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
78

mgrankin's avatar
mgrankin committed
79
            for i in range(0, len(tokenized_text)-block_size+1, block_size): # Truncate in block of block_size
80
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i:i+block_size]))
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
            with open(cached_features_file, 'wb') as handle:
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return torch.tensor(self.examples[item])


def load_and_cache_examples(args, tokenizer, evaluate=False):
    dataset = TextDataset(tokenizer, file_path=args.eval_data_file if evaluate else args.train_data_file, block_size=args.block_size)
    return dataset


101
102
103
104
105
106
107
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

108

109
110
111
112
113
114
115
116
def _rotate_checkpoints(args, checkpoint_prefix, use_mtime=False):
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, '{}-*'.format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
117
118
119
    if len(glob_checkpoints) <= args.save_total_limit:
        return

120
    ordering_and_checkpoint_path = []
jinoobaek-qz's avatar
jinoobaek-qz committed
121
    for path in glob_checkpoints:
122
123
124
125
126
127
128
129
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
            regex_match = re.match('.*{}-([0-9]+)'.format(checkpoint_prefix), path)
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
130
131
132
133
134
135
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
136
137


138
def mask_tokens(inputs, tokenizer, args):
139
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
140
    labels = inputs.clone()
141
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
142
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
143
144
    special_tokens_mask = [tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()]
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
145
    masked_indices = torch.bernoulli(probability_matrix).bool()
146
147
148
    labels[~masked_indices] = -1  # We only compute loss on masked tokens

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
149
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
150
151
152
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
153
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
154
155
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
156

157
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
158
    return inputs, labels
159

160

161
162
163
164
165
166
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
167
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
168
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
215
    set_seed(args)  # Added here for reproducibility (even between python 2 and 3)
216
217
218
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
219
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
220
221
222
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
223
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
224
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
225
226

            if args.n_gpu > 1:
227
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
228
229
230
231
232
233
234
235
236
237
238
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
239
240
241
242
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
243
                optimizer.step()
244
                scheduler.step()  # Update learning rate schedule
245
246
247
248
249
250
251
252
253
254
255
256
257
258
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
259
                    checkpoint_prefix = 'checkpoint'
260
                    # Save model checkpoint
261
                    output_dir = os.path.join(args.output_dir, '{}-{}'.format(checkpoint_prefix, global_step))
262
263
264
265
266
267
268
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

269
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
296
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
297
298
299
300
301
302
303

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
304
305
    model.eval()

306
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
307
        batch = batch.to(args.device)
308
309

        with torch.no_grad():
310
            outputs = model(batch, masked_lm_labels=batch) if args.mlm else model(batch, labels=batch)
311
312
313
314
315
316
317
318
319
320
321
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

    result = {
        "perplexity": perplexity
    }

322
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
323
324
325
326
327
328
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

329
    return result
330
331
332
333
334
335


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
336
337
    parser.add_argument("--train_data_file", default=None, type=str, required=True,
                        help="The input training data file (a text file).")
338
339
340
341
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
342
343
344
345
    parser.add_argument("--eval_data_file", default=None, type=str,
                        help="An optional input evaluation data file to evaluate the perplexity on (a text file).")

    parser.add_argument("--model_type", default="bert", type=str,
346
                        help="The model architecture to be fine-tuned.")
347
    parser.add_argument("--model_name_or_path", default="bert-base-cased", type=str,
348
349
350
351
352
353
354
                        help="The model checkpoint for weights initialization.")

    parser.add_argument("--mlm", action='store_true',
                        help="Train with masked-language modeling loss instead of language modeling.")
    parser.add_argument("--mlm_probability", type=float, default=0.15,
                        help="Ratio of tokens to mask for masked language modeling loss")

355
    parser.add_argument("--config_name", default="", type=str,
356
                        help="Optional pretrained config name or path if not the same as model_name_or_path")
357
    parser.add_argument("--tokenizer_name", default="", type=str,
358
                        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
359
    parser.add_argument("--cache_dir", default="", type=str,
360
361
362
363
                        help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
    parser.add_argument("--block_size", default=-1, type=int,
                        help="Optional input sequence length after tokenization."
                             "The training dataset will be truncated in block of this size for training."
thomwolf's avatar
typo  
thomwolf committed
364
                             "Default to the model max input length for single sentence inputs (take into account special tokens).")
365
366
367
368
369
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--evaluate_during_training", action='store_true',
370
                        help="Run evaluation during training at each logging step.")
371
372
373
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

374
    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
375
                        help="Batch size per GPU/CPU for training.")
376
    parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
377
378
379
380
381
382
383
384
385
386
387
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
388
    parser.add_argument("--num_train_epochs", default=1.0, type=float,
389
390
391
392
393
394
395
396
397
398
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
jinoobaek-qz's avatar
jinoobaek-qz committed
399
400
    parser.add_argument('--save_total_limit', type=int, default=None,
                        help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
401
    parser.add_argument("--eval_all_checkpoints", action='store_true',
402
                        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    args = parser.parse_args()

423
    if args.model_type in ["bert", "roberta", "distilbert"] and not args.mlm:
424
425
        raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
                         "flag (masked language modeling).")
426
427
428
    if args.eval_data_file is None and args.do_eval:
        raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
                         "or remove the --do_eval argument.")
429

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
464
465
466
467
468
469
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    if args.block_size <= 0:
thomwolf's avatar
thomwolf committed
470
471
        args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
472
473
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
    model.to(args.device)
474
475

    if args.local_rank == 0:
476
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
477
478
479
480
481

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
482
483
484
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

485
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
486
487
488
489

        if args.local_rank == 0:
            torch.distributed.barrier()

490
491
492
493
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)


494
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
512
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
513
514
515
516
517
518
519
520
521
        model.to(args.device)


    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
522
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
523
524
525
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
526
527
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
528
529
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
530
            result = evaluate(args, model, tokenizer, prefix=prefix)
531
532
533
534
535
536
537
538
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

    return results


if __name__ == "__main__":
    main()