test_pipeline_mixin.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import json
import os
import random
20
import unittest
21
22
23
from pathlib import Path

from transformers.testing_utils import (
24
    is_pipeline_test,
25
26
27
28
29
30
31
    require_decord,
    require_pytesseract,
    require_timm,
    require_torch,
    require_torch_or_tf,
    require_vision,
)
32
from transformers.utils import direct_transformers_import, logging
33
34
35
36
37
38
39
40
41
42

from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests
from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests
from .pipelines.test_pipelines_conversational import ConversationalPipelineTests
from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests
from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests
from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests
from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests
from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests
43
from .pipelines.test_pipelines_image_to_image import ImageToImagePipelineTests
44
from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests
45
from .pipelines.test_pipelines_mask_generation import MaskGenerationPipelineTests
46
47
48
49
50
51
52
from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests
from .pipelines.test_pipelines_question_answering import QAPipelineTests
from .pipelines.test_pipelines_summarization import SummarizationPipelineTests
from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests
from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests
from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests
from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests
53
from .pipelines.test_pipelines_text_to_audio import TextToAudioPipelineTests
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests
from .pipelines.test_pipelines_translation import TranslationPipelineTests
from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests
from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests


pipeline_test_mapping = {
    "audio-classification": {"test": AudioClassificationPipelineTests},
    "automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests},
    "conversational": {"test": ConversationalPipelineTests},
    "depth-estimation": {"test": DepthEstimationPipelineTests},
    "document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests},
    "feature-extraction": {"test": FeatureExtractionPipelineTests},
    "fill-mask": {"test": FillMaskPipelineTests},
    "image-classification": {"test": ImageClassificationPipelineTests},
    "image-segmentation": {"test": ImageSegmentationPipelineTests},
74
    "image-to-image": {"test": ImageToImagePipelineTests},
75
    "image-to-text": {"test": ImageToTextPipelineTests},
76
    "mask-generation": {"test": MaskGenerationPipelineTests},
77
78
79
80
81
82
83
    "object-detection": {"test": ObjectDetectionPipelineTests},
    "question-answering": {"test": QAPipelineTests},
    "summarization": {"test": SummarizationPipelineTests},
    "table-question-answering": {"test": TQAPipelineTests},
    "text2text-generation": {"test": Text2TextGenerationPipelineTests},
    "text-classification": {"test": TextClassificationPipelineTests},
    "text-generation": {"test": TextGenerationPipelineTests},
84
    "text-to-audio": {"test": TextToAudioPipelineTests},
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    "token-classification": {"test": TokenClassificationPipelineTests},
    "translation": {"test": TranslationPipelineTests},
    "video-classification": {"test": VideoClassificationPipelineTests},
    "visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests},
    "zero-shot": {"test": ZeroShotClassificationPipelineTests},
    "zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests},
    "zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests},
    "zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests},
}

for task, task_info in pipeline_test_mapping.items():
    test = task_info["test"]
    task_info["mapping"] = {
        "pt": getattr(test, "model_mapping", None),
        "tf": getattr(test, "tf_model_mapping", None),
    }


103
104
105
106
107
108
109
110
# The default value `hf-internal-testing` is for running the pipeline testing against the tiny models on the Hub.
# For debugging purpose, we can specify a local path which is the `output_path` argument of a previous run of
# `utils/create_dummy_models.py`.
TRANSFORMERS_TINY_MODEL_PATH = os.environ.get("TRANSFORMERS_TINY_MODEL_PATH", "hf-internal-testing")
if TRANSFORMERS_TINY_MODEL_PATH == "hf-internal-testing":
    TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json")
else:
    TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, "reports", "tiny_model_summary.json")
111
112
113
114
115
116
117
118
119
120
with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp:
    tiny_model_summary = json.load(fp)


PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers")


# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)

121
122
logger = logging.get_logger(__name__)

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

class PipelineTesterMixin:
    model_tester = None
    pipeline_model_mapping = None
    supported_frameworks = ["pt", "tf"]

    def run_task_tests(self, task):
        """Run pipeline tests for a specific `task`

        Args:
            task (`str`):
                A task name. This should be a key in the mapping `pipeline_test_mapping`.
        """
        if task not in self.pipeline_model_mapping:
            self.skipTest(
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: `{task}` is not in "
                f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`."
            )

        model_architectures = self.pipeline_model_mapping[task]
        if not isinstance(model_architectures, tuple):
            model_architectures = (model_architectures,)
        if not isinstance(model_architectures, tuple):
            raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.")

        for model_architecture in model_architectures:
            model_arch_name = model_architecture.__name__

            # Get the canonical name
            for _prefix in ["Flax", "TF"]:
                if model_arch_name.startswith(_prefix):
                    model_arch_name = model_arch_name[len(_prefix) :]
                    break

            tokenizer_names = []
            processor_names = []
159
            commit = None
160
161
162
            if model_arch_name in tiny_model_summary:
                tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"]
                processor_names = tiny_model_summary[model_arch_name]["processor_classes"]
163
164
                if "sha" in tiny_model_summary[model_arch_name]:
                    commit = tiny_model_summary[model_arch_name]["sha"]
165
166
167
168
169
            # Adding `None` (if empty) so we can generate tests
            tokenizer_names = [None] if len(tokenizer_names) == 0 else tokenizer_names
            processor_names = [None] if len(processor_names) == 0 else processor_names

            repo_name = f"tiny-random-{model_arch_name}"
170
171
            if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
                repo_name = model_arch_name
172

173
174
175
            self.run_model_pipeline_tests(
                task, repo_name, model_architecture, tokenizer_names, processor_names, commit
            )
176

177
    def run_model_pipeline_tests(self, task, repo_name, model_architecture, tokenizer_names, processor_names, commit):
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names

        Args:
            task (`str`):
                A task name. This should be a key in the mapping `pipeline_test_mapping`.
            repo_name (`str`):
                A model repository id on the Hub.
            model_architecture (`type`):
                A subclass of `PretrainedModel` or `PretrainedModel`.
            tokenizer_names (`List[str]`):
                A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
            processor_names (`List[str]`):
                A list of names of subclasses of `BaseImageProcessor` or `FeatureExtractionMixin`.
        """
        # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
        # `run_pipeline_test`.
        pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__

        for tokenizer_name in tokenizer_names:
            for processor_name in processor_names:
198
                if self.is_pipeline_test_to_skip(
199
200
201
202
203
204
                    pipeline_test_class_name,
                    model_architecture.config_class,
                    model_architecture,
                    tokenizer_name,
                    processor_name,
                ):
205
                    logger.warning(
206
207
208
209
                        f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is "
                        f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
                        f"`{tokenizer_name}` | processor `{processor_name}`."
                    )
210
                    continue
211
                self.run_pipeline_test(task, repo_name, model_architecture, tokenizer_name, processor_name, commit)
212

213
    def run_pipeline_test(self, task, repo_name, model_architecture, tokenizer_name, processor_name, commit):
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        """Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name

        The model will be loaded from a model repository on the Hub.

        Args:
            task (`str`):
                A task name. This should be a key in the mapping `pipeline_test_mapping`.
            repo_name (`str`):
                A model repository id on the Hub.
            model_architecture (`type`):
                A subclass of `PretrainedModel` or `PretrainedModel`.
            tokenizer_name (`str`):
                The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
            processor_name (`str`):
                The name of a subclass of `BaseImageProcessor` or `FeatureExtractionMixin`.
        """
230
231
232
233
        repo_id = f"{TRANSFORMERS_TINY_MODEL_PATH}/{repo_name}"
        if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
            model_type = model_architecture.config_class.model_type
            repo_id = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, model_type, repo_name)
234
235
236
237

        tokenizer = None
        if tokenizer_name is not None:
            tokenizer_class = getattr(transformers_module, tokenizer_name)
238
            tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit)
239
240
241
242
243
244

        processor = None
        if processor_name is not None:
            processor_class = getattr(transformers_module, processor_name)
            # If the required packages (like `Pillow` or `torchaudio`) are not installed, this will fail.
            try:
245
                processor = processor_class.from_pretrained(repo_id, revision=commit)
246
            except Exception:
247
                logger.warning(
248
249
250
                    f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not load the "
                    f"processor from `{repo_id}` with `{processor_name}`."
                )
251
                return
252
253
254

        # TODO: Maybe not upload such problematic tiny models to Hub.
        if tokenizer is None and processor is None:
255
            logger.warning(
256
257
258
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
                f"any tokenizer / processor from `{repo_id}`."
            )
259
            return
260
261
262

        # TODO: We should check if a model file is on the Hub repo. instead.
        try:
263
            model = model_architecture.from_pretrained(repo_id, revision=commit)
264
        except Exception:
265
            logger.warning(
266
267
268
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not find or load "
                f"the model from `{repo_id}` with `{model_architecture}`."
            )
269
            return
270

271
272
273
274
275
276
277
278
279
        pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
        if self.is_pipeline_test_to_skip_more(pipeline_test_class_name, model.config, model, tokenizer, processor):
            logger.warning(
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: test is "
                f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
                f"`{tokenizer_name}` | processor `{processor_name}`."
            )
            return

280
281
282
283
284
285
286
287
288
289
290
291
292
293
        # validate
        validate_test_components(self, task, model, tokenizer, processor)

        if hasattr(model, "eval"):
            model = model.eval()

        # Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
        # `run_pipeline_test`.
        task_test = pipeline_test_mapping[task]["test"]()

        pipeline, examples = task_test.get_test_pipeline(model, tokenizer, processor)
        if pipeline is None:
            # The test can disable itself, but it should be very marginal
            # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
294
            logger.warning(
295
296
297
                f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')} is skipped: Could not get the "
                "pipeline for testing."
            )
298
            return
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

        task_test.run_pipeline_test(pipeline, examples)

        def run_batch_test(pipeline, examples):
            # Need to copy because `Conversation` are stateful
            if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
                return  # No batching for this and it's OK

            # 10 examples with batch size 4 means there needs to be a unfinished batch
            # which is important for the unbatcher
            def data(n):
                for _ in range(n):
                    # Need to copy because Conversation object is mutated
                    yield copy.deepcopy(random.choice(examples))

            out = []
            for item in pipeline(data(10), batch_size=4):
                out.append(item)
            self.assertEqual(len(out), 10)

        run_batch_test(pipeline, examples)

321
    @is_pipeline_test
322
323
324
    def test_pipeline_audio_classification(self):
        self.run_task_tests(task="audio-classification")

325
    @is_pipeline_test
326
327
328
    def test_pipeline_automatic_speech_recognition(self):
        self.run_task_tests(task="automatic-speech-recognition")

329
    @is_pipeline_test
330
331
332
    def test_pipeline_conversational(self):
        self.run_task_tests(task="conversational")

333
    @is_pipeline_test
334
335
336
337
338
339
    @require_vision
    @require_timm
    @require_torch
    def test_pipeline_depth_estimation(self):
        self.run_task_tests(task="depth-estimation")

340
    @is_pipeline_test
341
342
343
344
345
346
    @require_pytesseract
    @require_torch
    @require_vision
    def test_pipeline_document_question_answering(self):
        self.run_task_tests(task="document-question-answering")

347
    @is_pipeline_test
348
349
350
    def test_pipeline_feature_extraction(self):
        self.run_task_tests(task="feature-extraction")

351
    @is_pipeline_test
352
353
354
    def test_pipeline_fill_mask(self):
        self.run_task_tests(task="fill-mask")

355
    @is_pipeline_test
356
357
358
359
360
    @require_torch_or_tf
    @require_vision
    def test_pipeline_image_classification(self):
        self.run_task_tests(task="image-classification")

361
    @is_pipeline_test
362
363
364
365
366
367
    @require_vision
    @require_timm
    @require_torch
    def test_pipeline_image_segmentation(self):
        self.run_task_tests(task="image-segmentation")

368
    @is_pipeline_test
369
370
371
372
    @require_vision
    def test_pipeline_image_to_text(self):
        self.run_task_tests(task="image-to-text")

373
    @unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
374
375
376
377
378
379
    @is_pipeline_test
    @require_vision
    @require_torch
    def test_pipeline_mask_generation(self):
        self.run_task_tests(task="mask-generation")

380
    @is_pipeline_test
381
382
383
384
385
386
    @require_vision
    @require_timm
    @require_torch
    def test_pipeline_object_detection(self):
        self.run_task_tests(task="object-detection")

387
    @is_pipeline_test
388
389
390
    def test_pipeline_question_answering(self):
        self.run_task_tests(task="question-answering")

391
    @is_pipeline_test
392
393
394
    def test_pipeline_summarization(self):
        self.run_task_tests(task="summarization")

395
    @is_pipeline_test
396
397
398
    def test_pipeline_table_question_answering(self):
        self.run_task_tests(task="table-question-answering")

399
    @is_pipeline_test
400
401
402
    def test_pipeline_text2text_generation(self):
        self.run_task_tests(task="text2text-generation")

403
    @is_pipeline_test
404
405
406
    def test_pipeline_text_classification(self):
        self.run_task_tests(task="text-classification")

407
    @is_pipeline_test
408
409
410
411
    @require_torch_or_tf
    def test_pipeline_text_generation(self):
        self.run_task_tests(task="text-generation")

412
413
414
415
416
    @is_pipeline_test
    @require_torch
    def test_pipeline_text_to_audio(self):
        self.run_task_tests(task="text-to-audio")

417
    @is_pipeline_test
418
419
420
    def test_pipeline_token_classification(self):
        self.run_task_tests(task="token-classification")

421
    @is_pipeline_test
422
423
424
    def test_pipeline_translation(self):
        self.run_task_tests(task="translation")

425
    @is_pipeline_test
426
427
428
429
430
431
    @require_torch_or_tf
    @require_vision
    @require_decord
    def test_pipeline_video_classification(self):
        self.run_task_tests(task="video-classification")

432
    @is_pipeline_test
433
434
435
436
437
    @require_torch
    @require_vision
    def test_pipeline_visual_question_answering(self):
        self.run_task_tests(task="visual-question-answering")

438
    @is_pipeline_test
439
440
441
    def test_pipeline_zero_shot(self):
        self.run_task_tests(task="zero-shot")

442
    @is_pipeline_test
443
444
445
446
    @require_torch
    def test_pipeline_zero_shot_audio_classification(self):
        self.run_task_tests(task="zero-shot-audio-classification")

447
    @is_pipeline_test
448
449
450
451
    @require_vision
    def test_pipeline_zero_shot_image_classification(self):
        self.run_task_tests(task="zero-shot-image-classification")

452
    @is_pipeline_test
453
454
455
456
457
    @require_vision
    @require_torch
    def test_pipeline_zero_shot_object_detection(self):
        self.run_task_tests(task="zero-shot-object-detection")

458
    # This contains the test cases to be skipped without model architecture being involved.
459
460
461
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
462
463
464
465
        """Skip some tests based on the classes or their names without the instantiated objects.

        This is to avoid calling `from_pretrained` (so reducing the runtime) if we already know the tests will fail.
        """
466
467
468
469
470
471
472
473
474
        # No fix is required for this case.
        if (
            pipeline_test_casse_name == "DocumentQuestionAnsweringPipelineTests"
            and tokenizer_name is not None
            and not tokenizer_name.endswith("Fast")
        ):
            # `DocumentQuestionAnsweringPipelineTests` requires a fast tokenizer.
            return True

475
476
        return False

477
478
479
480
481
482
483
484
485
486
487
488
489
490
    def is_pipeline_test_to_skip_more(self, pipeline_test_casse_name, config, model, tokenizer, processor):  # noqa
        """Skip some more tests based on the information from the instantiated objects."""
        # No fix is required for this case.
        if (
            pipeline_test_casse_name == "QAPipelineTests"
            and tokenizer is not None
            and getattr(tokenizer, "pad_token", None) is None
            and not tokenizer.__class__.__name__.endswith("Fast")
        ):
            # `QAPipelineTests` doesn't work with a slow tokenizer that has no pad token.
            return True

        return False

491
492
493
494
495
496
497
498
499
500
501
502
503
504

def validate_test_components(test_case, task, model, tokenizer, processor):
    # TODO: Move this to tiny model creation script
    # head-specific (within a model type) necessary changes to the config
    # 1. for `BlenderbotForCausalLM`
    if model.__class__.__name__ == "BlenderbotForCausalLM":
        model.config.encoder_no_repeat_ngram_size = 0

    # TODO: Change the tiny model creation script: don't create models with problematic tokenizers
    # Avoid `IndexError` in embedding layers
    CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"]
    if tokenizer is not None:
        config_vocab_size = getattr(model.config, "vocab_size", None)
        # For CLIP-like models
505
506
507
508
509
510
        if config_vocab_size is None:
            if hasattr(model.config, "text_config"):
                config_vocab_size = getattr(model.config.text_config, "vocab_size", None)
            elif hasattr(model.config, "text_encoder"):
                config_vocab_size = getattr(model.config.text_encoder, "vocab_size", None)

511
512
513
514
        if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE:
            raise ValueError(
                "Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`."
            )