create_dummy_models.py 48.9 KB
Newer Older
Yih-Dar's avatar
Yih-Dar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections.abc
18
import copy
Yih-Dar's avatar
Yih-Dar committed
19
20
21
22
23
24
import importlib
import inspect
import json
import os
import shutil
import sys
25
import tempfile
Yih-Dar's avatar
Yih-Dar committed
26
27
28
from pathlib import Path

from check_config_docstrings import get_checkpoint_from_config_class
29
from datasets import load_dataset
30
from huggingface_hub import Repository, create_repo, upload_folder
31

Yih-Dar's avatar
Yih-Dar committed
32
33
34
from transformers import (
    CONFIG_MAPPING,
    FEATURE_EXTRACTOR_MAPPING,
35
    IMAGE_PROCESSOR_MAPPING,
Yih-Dar's avatar
Yih-Dar committed
36
37
38
39
    PROCESSOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoTokenizer,
    LayoutLMv3TokenizerFast,
40
    PreTrainedTokenizer,
Yih-Dar's avatar
Yih-Dar committed
41
42
43
44
45
    PreTrainedTokenizerFast,
    logging,
)
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.file_utils import is_tf_available, is_torch_available
46
from transformers.image_processing_utils import BaseImageProcessor
Yih-Dar's avatar
Yih-Dar committed
47
from transformers.models.auto.configuration_auto import AutoConfig, model_type_to_module_name
48
from transformers.models.fsmt import configuration_fsmt
Yih-Dar's avatar
Yih-Dar committed
49
50
51
52
from transformers.processing_utils import ProcessorMixin, transformers_module
from transformers.tokenization_utils_base import PreTrainedTokenizerBase


53
54
55
# make sure tokenizer plays nice with multiprocessing
os.environ["TOKENIZERS_PARALLELISM"] = "false"

Yih-Dar's avatar
Yih-Dar committed
56
logging.set_verbosity_error()
57
logging.disable_progress_bar()
Yih-Dar's avatar
Yih-Dar committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
logger = logging.get_logger(__name__)

sys.path.append(".")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

if not is_torch_available():
    raise ValueError("Please install PyTorch.")

if not is_tf_available():
    raise ValueError("Please install TensorFlow.")

FRAMEWORKS = ["pytorch", "tensorflow"]
INVALID_ARCH = []
TARGET_VOCAB_SIZE = 1024


def get_processor_types_from_config_class(config_class, allowed_mappings=None):
    """Return a tuple of processors for `config_class`.

    We use `tuple` here to include (potentially) both slow & fast tokenizers.
    """
79
80
81
82
83
84
85
86
87

    # To make a uniform return type
    def _to_tuple(x):
        if not isinstance(x, collections.abc.Sequence):
            x = (x,)
        else:
            x = tuple(x)
        return x

Yih-Dar's avatar
Yih-Dar committed
88
    if allowed_mappings is None:
89
        allowed_mappings = ["processor", "tokenizer", "image_processor", "feature_extractor"]
Yih-Dar's avatar
Yih-Dar committed
90
91
92

    processor_types = ()

93
94
    # Check first if a model has `ProcessorMixin`. Otherwise, check if it has tokenizers, and/or an image processor or
    # a feature extractor
Yih-Dar's avatar
Yih-Dar committed
95
    if config_class in PROCESSOR_MAPPING and "processor" in allowed_mappings:
96
        processor_types = _to_tuple(PROCESSOR_MAPPING[config_class])
Yih-Dar's avatar
Yih-Dar committed
97
    else:
98
99
        if config_class in TOKENIZER_MAPPING and "tokenizer" in allowed_mappings:
            processor_types = TOKENIZER_MAPPING[config_class]
Yih-Dar's avatar
Yih-Dar committed
100

101
102
103
104
105
106
107
108
        if config_class in IMAGE_PROCESSOR_MAPPING and "image_processor" in allowed_mappings:
            processor_types += _to_tuple(IMAGE_PROCESSOR_MAPPING[config_class])
        elif config_class in FEATURE_EXTRACTOR_MAPPING and "feature_extractor" in allowed_mappings:
            processor_types += _to_tuple(FEATURE_EXTRACTOR_MAPPING[config_class])

    # Remark: some configurations have no processor at all. For example, generic composite models like
    # `EncoderDecoderModel` is used for any (compatible) text models. Also, `DecisionTransformer` doesn't
    # require any processor.
Yih-Dar's avatar
Yih-Dar committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    # We might get `None` for some tokenizers - remove them here.
    processor_types = tuple(p for p in processor_types if p is not None)

    return processor_types


def get_architectures_from_config_class(config_class, arch_mappings):
    """Return a tuple of all possible architectures attributed to a configuration class `config_class`.

    For example, BertConfig -> [BertModel, BertForMaskedLM, ..., BertForQuestionAnswering].
    """
    # A model architecture could appear in several mappings. For example, `BartForConditionalGeneration` is in
    #   - MODEL_FOR_PRETRAINING_MAPPING_NAMES
    #   - MODEL_WITH_LM_HEAD_MAPPING_NAMES
    #   - MODEL_FOR_MASKED_LM_MAPPING_NAMES
    #   - MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
    # We avoid the duplication.
    architectures = set()

    for mapping in arch_mappings:
        if config_class in mapping:
            models = mapping[config_class]
            models = tuple(models) if isinstance(models, collections.abc.Sequence) else (models,)
            for model in models:
                if model.__name__ not in unexportable_model_architectures:
                    architectures.add(model)

    architectures = tuple(architectures)

    return architectures


def get_config_class_from_processor_class(processor_class):
    """Get the config class from a processor class.

    Some config/model classes use tokenizers/feature_extractors from other models. For example, `GPT-J` uses
    `GPT2Tokenizer`. If no checkpoint is found for a config class, or a checkpoint is found without necessary file(s) to
    create the processor for `processor_class`, we get the config class that corresponds to `processor_class` and use it
    to find a checkpoint in order to create the processor.
    """

    processor_prefix = processor_class.__name__
152
    for postfix in ["TokenizerFast", "Tokenizer", "ImageProcessor", "FeatureExtractor", "Processor"]:
Yih-Dar's avatar
Yih-Dar committed
153
154
155
156
157
158
159
160
161
162
163
164
165
        processor_prefix = processor_prefix.replace(postfix, "")

    # `Wav2Vec2CTCTokenizer` -> `Wav2Vec2Config`
    if processor_prefix == "Wav2Vec2CTC":
        processor_prefix = "Wav2Vec2"

    # Find the new configuration class
    new_config_name = f"{processor_prefix}Config"
    new_config_class = getattr(transformers_module, new_config_name)

    return new_config_class


166
def build_processor(config_class, processor_class, allow_no_checkpoint=False):
Yih-Dar's avatar
Yih-Dar committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    """Create a processor for `processor_class`.

    If a processor is not able to be built with the original arguments, this method tries to change the arguments and
    call itself recursively, by inferring a new `config_class` or a new `processor_class` from another one, in order to
    find a checkpoint containing the necessary files to build a processor.

    The processor is not saved here. Instead, it will be saved in `convert_processors` after further changes in
    `convert_processors`. For each model architecture`, a copy will be created and saved along the built model.
    """
    # Currently, this solely uses the docstring in the source file of `config_class` to find a checkpoint.
    checkpoint = get_checkpoint_from_config_class(config_class)

    if checkpoint is None:
        # try to get the checkpoint from the config class for `processor_class`.
        # This helps cases like `XCLIPConfig` and `VideoMAEFeatureExtractor` to find a checkpoint from `VideoMAEConfig`.
        config_class_from_processor_class = get_config_class_from_processor_class(processor_class)
        checkpoint = get_checkpoint_from_config_class(config_class_from_processor_class)

    processor = None
    try:
        processor = processor_class.from_pretrained(checkpoint)
    except Exception as e:
        logger.error(e)
        pass

    # Try to get a new processor class from checkpoint. This is helpful for a checkpoint without necessary file to load
    # processor while `processor_class` is an Auto class. For example, `sew` has `Wav2Vec2Processor` in
    # `PROCESSOR_MAPPING_NAMES`, its `tokenizer_class` is `AutoTokenizer`, and the checkpoint
    # `https://huggingface.co/asapp/sew-tiny-100k` has no tokenizer file, but we can get
    # `tokenizer_class: Wav2Vec2CTCTokenizer` from the config file. (The new processor class won't be able to load from
    # `checkpoint`, but it helps this recursive method to find a way to build a processor).
    if (
        processor is None
        and checkpoint is not None
        and issubclass(processor_class, (PreTrainedTokenizerBase, AutoTokenizer))
    ):
        try:
            config = AutoConfig.from_pretrained(checkpoint)
        except Exception as e:
            logger.error(e)
            config = None
        if config is not None:
209
210
211
212
213
            if not isinstance(config, config_class):
                raise ValueError(
                    f"`config` (which is of type {config.__class__.__name__}) should be an instance of `config_class`"
                    f" ({config_class.__name__})!"
                )
Yih-Dar's avatar
Yih-Dar committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
            tokenizer_class = config.tokenizer_class
            new_processor_class = None
            if tokenizer_class is not None:
                new_processor_class = getattr(transformers_module, tokenizer_class)
                if new_processor_class != processor_class:
                    processor = build_processor(config_class, new_processor_class)
            # If `tokenizer_class` is not specified in `config`, let's use `config` to get the process class via auto
            # mappings, but only allow the tokenizer mapping being used. This is to make `Wav2Vec2Conformer` build
            if processor is None:
                new_processor_classes = get_processor_types_from_config_class(
                    config.__class__, allowed_mappings=["tokenizer"]
                )
                # Used to avoid infinite recursion between a pair of fast/slow tokenizer types
                names = [
                    x.__name__.replace("Fast", "") for x in [processor_class, new_processor_class] if x is not None
                ]
                new_processor_classes = [
                    x for x in new_processor_classes if x is not None and x.__name__.replace("Fast", "") not in names
                ]
                if len(new_processor_classes) > 0:
                    new_processor_class = new_processor_classes[0]
235
236
237
238
239
                    # Let's use fast tokenizer if there is any
                    for x in new_processor_classes:
                        if x.__name__.endswith("Fast"):
                            new_processor_class = x
                            break
Yih-Dar's avatar
Yih-Dar committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
                    processor = build_processor(config_class, new_processor_class)

    if processor is None:
        # Try to build each component (tokenizer & feature extractor) of a `ProcessorMixin`.
        if issubclass(processor_class, ProcessorMixin):
            attrs = {}
            for attr_name in processor_class.attributes:
                attrs[attr_name] = []
                # This could be a tuple (for tokenizers). For example, `CLIPProcessor` has
                #   - feature_extractor_class = "CLIPFeatureExtractor"
                #   - tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
                attr_class_names = getattr(processor_class, f"{attr_name}_class")
                if not isinstance(attr_class_names, tuple):
                    attr_class_names = (attr_class_names,)

                for name in attr_class_names:
                    attr_class = getattr(transformers_module, name)
                    attr = build_processor(config_class, attr_class)
                    if attr is not None:
                        attrs[attr_name].append(attr)

            # try to build a `ProcessorMixin`, so we can return a single value
            if all(len(v) > 0 for v in attrs.values()):
                try:
                    processor = processor_class(**{k: v[0] for k, v in attrs.items()})
                except Exception as e:
                    logger.error(e)
                    pass
        else:
            # `checkpoint` might lack some file(s) to load a processor. For example, `facebook/hubert-base-ls960`
            # has no tokenizer file to load `Wav2Vec2CTCTokenizer`. In this case, we try to build a processor
            # with the configuration class (for example, `Wav2Vec2Config`) corresponding to `processor_class`.
            config_class_from_processor_class = get_config_class_from_processor_class(processor_class)
            if config_class_from_processor_class != config_class:
                processor = build_processor(config_class_from_processor_class, processor_class)

276
277
278
279
280
281
282
283
284
285
286
287
    # Try to create an image processor or a feature extractor without any checkpoint
    if (
        processor is None
        and allow_no_checkpoint
        and (issubclass(processor_class, BaseImageProcessor) or issubclass(processor_class, FeatureExtractionMixin))
    ):
        try:
            processor = processor_class()
        except Exception as e:
            logger.error(e)
            pass

Yih-Dar's avatar
Yih-Dar committed
288
289
    # validation
    if processor is not None:
290
291
292
293
294
        if not (isinstance(processor, processor_class) or processor_class.__name__.startswith("Auto")):
            raise ValueError(
                f"`processor` (which is of type {processor.__class__.__name__}) should be an instance of"
                f" {processor_class.__name__} or an Auto class!"
            )
Yih-Dar's avatar
Yih-Dar committed
295
296
297
298

    return processor


299
def get_tiny_config(config_class, **model_tester_kwargs):
Yih-Dar's avatar
Yih-Dar committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    """Retrieve a tiny configuration from `config_class` using each model's `ModelTester`.

    Args:
        config_class: Subclass of `PreTrainedConfig`.

    Returns:
        An instance of `config_class` with tiny hyperparameters
    """
    model_type = config_class.model_type

    # For model type like `data2vec-vision` and `donut-swin`, we can't get the config/model file name directly via
    # `model_type` as it would be sth. like `configuration_data2vec_vision.py`.
    # A simple way is to use `inspect.getsourcefile(config_class)`.
    config_source_file = inspect.getsourcefile(config_class)
    # The modeling file name without prefix (`modeling_`) and postfix (`.py`)
315
    modeling_name = config_source_file.split(os.path.sep)[-1].replace("configuration_", "").replace(".py", "")
Yih-Dar's avatar
Yih-Dar committed
316
317
318
319

    try:
        print("Importing", model_type_to_module_name(model_type))
        module_name = model_type_to_module_name(model_type)
320
321
        if not modeling_name.startswith(module_name):
            raise ValueError(f"{modeling_name} doesn't start with {module_name}!")
Yih-Dar's avatar
Yih-Dar committed
322
323
324
325
        module = importlib.import_module(f".models.{module_name}.test_modeling_{modeling_name}", package="tests")
        camel_case_model_name = config_class.__name__.split("Config")[0]
        model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
    except ModuleNotFoundError as e:
326
327
        error = f"Tiny config not created for {model_type} - cannot find the testing module from the model name"
        raise ValueError(f"{error}: {e}")
Yih-Dar's avatar
Yih-Dar committed
328
329

    if model_tester_class is None:
330
        error = f"Tiny config not created for {model_type} - no model tester is found in the testing module"
Yih-Dar's avatar
Yih-Dar committed
331
332
333
        raise ValueError(error)

    # `parent` is an instance of `unittest.TestCase`, but we don't need it here.
334
    model_tester = model_tester_class(parent=None, **model_tester_kwargs)
Yih-Dar's avatar
Yih-Dar committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

    if hasattr(model_tester, "get_pipeline_config"):
        return model_tester.get_pipeline_config()
    elif hasattr(model_tester, "prepare_config_and_inputs"):
        # `PoolFormer` has no `get_config` defined. Furthermore, it's better to use `prepare_config_and_inputs` even if
        # `get_config` is defined, since there might be some extra changes in `prepare_config_and_inputs`.
        return model_tester.prepare_config_and_inputs()[0]
    elif hasattr(model_tester, "get_config"):
        return model_tester.get_config()
    else:
        error = (
            f"Tiny config not created for {model_type} - the model tester {model_tester_class.__name__} lacks"
            " necessary method to create config."
        )
        raise ValueError(error)


def convert_tokenizer(tokenizer_fast: PreTrainedTokenizerFast):
    new_tokenizer = tokenizer_fast.train_new_from_iterator(training_ds["text"], TARGET_VOCAB_SIZE, show_progress=False)

    # Make sure it at least runs
    if not isinstance(new_tokenizer, LayoutLMv3TokenizerFast):
        new_tokenizer(testing_ds["text"])

    return new_tokenizer


def convert_feature_extractor(feature_extractor, tiny_config):
    to_convert = False
    kwargs = {}
    if hasattr(tiny_config, "image_size"):
        kwargs["size"] = tiny_config.image_size
        kwargs["crop_size"] = tiny_config.image_size
        to_convert = True
    elif (
        hasattr(tiny_config, "vision_config")
        and tiny_config.vision_config is not None
        and hasattr(tiny_config.vision_config, "image_size")
    ):
        kwargs["size"] = tiny_config.vision_config.image_size
        kwargs["crop_size"] = tiny_config.vision_config.image_size
        to_convert = True

    # Speech2TextModel specific.
    if hasattr(tiny_config, "input_feat_per_channel"):
        kwargs["feature_size"] = tiny_config.input_feat_per_channel
        kwargs["num_mel_bins"] = tiny_config.input_feat_per_channel
        to_convert = True

    if to_convert:
        feature_extractor = feature_extractor.__class__(**kwargs)

    return feature_extractor


def convert_processors(processors, tiny_config, output_folder, result):
    """Change a processor to work with smaller inputs.

    For tokenizers, we try to reduce their vocabulary size.

    For feature extractor, we use smaller image size or change
    other attributes using the values from `tiny_config`. See `convert_feature_extractor`.

    This method should not fail: we catch the errors and put them in `result["warnings"]` with descriptive messages.
    """

    tokenizers = []
    feature_extractors = []
    for processor in processors:
        if isinstance(processor, PreTrainedTokenizerBase):
            tokenizers.append(processor)
406
407
        elif isinstance(processor, BaseImageProcessor):
            feature_extractors.append(processor)
Yih-Dar's avatar
Yih-Dar committed
408
409
410
411
412
        elif isinstance(processor, FeatureExtractionMixin):
            feature_extractors.append(processor)
        elif isinstance(processor, ProcessorMixin):
            # Currently, we only have these 2 possibilities
            tokenizers.append(processor.tokenizer)
413
414
415
416
            if hasattr(processor, "image_processor"):
                feature_extractors.append(processor.image_processor)
            elif hasattr(processor, "feature_extractor"):
                feature_extractors.append(processor.feature_extractor)
Yih-Dar's avatar
Yih-Dar committed
417
418

    # check the built processors have the unique type
419
    num_types = len({x.__class__.__name__ for x in feature_extractors})
420
421
    if num_types >= 2:
        raise ValueError(f"`feature_extractors` should contain at most 1 type, but it contains {num_types} types!")
422
    num_types = len({x.__class__.__name__.replace("Fast", "") for x in tokenizers})
423
424
    if num_types >= 2:
        raise ValueError(f"`tokenizers` should contain at most 1 tokenizer type, but it contains {num_types} types!")
Yih-Dar's avatar
Yih-Dar committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    fast_tokenizer = None
    slow_tokenizer = None
    for tokenizer in tokenizers:
        if isinstance(tokenizer, PreTrainedTokenizerFast):
            if fast_tokenizer is None:
                fast_tokenizer = tokenizer
                try:
                    # Wav2Vec2ForCTC , ByT5Tokenizer etc. all are already small enough and have no fast version that can
                    # be retrained
                    if fast_tokenizer.vocab_size > TARGET_VOCAB_SIZE:
                        fast_tokenizer = convert_tokenizer(tokenizer)
                except Exception as e:
                    result["warnings"].append(
                        f"Failed to convert the fast tokenizer for {fast_tokenizer.__class__.__name__}: {e}"
                    )
                    continue
        elif slow_tokenizer is None:
            slow_tokenizer = tokenizer

    # Make sure the fast tokenizer can be saved
    if fast_tokenizer:
        try:
            fast_tokenizer.save_pretrained(output_folder)
        except Exception as e:
            result["warnings"].append(
                f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}: {e}"
            )
            fast_tokenizer = None

    # Make sure the slow tokenizer (if any) corresponds to the fast version (as it might be converted above)
    if fast_tokenizer:
        try:
            slow_tokenizer = AutoTokenizer.from_pretrained(output_folder, use_fast=False)
        except Exception as e:
            result["warnings"].append(
                f"Failed to load the slow tokenizer saved from {fast_tokenizer.__class__.__name__}: {e}"
            )
            # Let's just keep the fast version
            slow_tokenizer = None

    # If the fast version can't be created and saved, let's use the slow version
    if not fast_tokenizer and slow_tokenizer:
        try:
            slow_tokenizer.save_pretrained(output_folder)
        except Exception as e:
            result["warnings"].append(
                f"Failed to save the slow tokenizer for {slow_tokenizer.__class__.__name__}: {e}"
            )
            slow_tokenizer = None

    # update feature extractors using the tiny config
    try:
        feature_extractors = [convert_feature_extractor(p, tiny_config) for p in feature_extractors]
    except Exception as e:
        result["warnings"].append(f"Failed to convert feature extractors: {e}")
        feature_extractors = []

483
484
485
486
487
488
489
490
491
492
493
494
    if hasattr(tiny_config, "max_position_embeddings") and tiny_config.max_position_embeddings > 0:
        if fast_tokenizer is not None:
            if fast_tokenizer.__class__.__name__ in ["RobertaTokenizerFast", "XLMRobertaTokenizerFast"]:
                fast_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2
            else:
                fast_tokenizer.model_max_length = tiny_config.max_position_embeddings
        if slow_tokenizer is not None:
            if slow_tokenizer.__class__.__name__ in ["RobertaTokenizer", "XLMRobertaTokenizer"]:
                slow_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2
            else:
                slow_tokenizer.model_max_length = tiny_config.max_position_embeddings

Yih-Dar's avatar
Yih-Dar committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    processors = [fast_tokenizer, slow_tokenizer] + feature_extractors
    processors = [p for p in processors if p is not None]
    for p in processors:
        p.save_pretrained(output_folder)

    return processors


def get_checkpoint_dir(output_dir, model_arch):
    """Get framework-agnostic architecture name. Used to save all PT/TF/Flax models into the same directory."""

    arch_name = model_arch.__name__
    if arch_name.startswith("TF"):
        arch_name = arch_name[2:]
    elif arch_name.startswith("Flax"):
        arch_name = arch_name[4:]

    return os.path.join(output_dir, arch_name)


def build_model(model_arch, tiny_config, output_dir):
    """Create and save a model for `model_arch`.

    Also copy the set of processors to each model (under the same model type) output folder.
    """

    checkpoint_dir = get_checkpoint_dir(output_dir, model_arch)

    processor_output_dir = os.path.join(output_dir, "processors")
    # copy the (same set of) processors (for a model type) to the model arch. specific folder
    if os.path.isdir(processor_output_dir):
        shutil.copytree(processor_output_dir, checkpoint_dir, dirs_exist_ok=True)

528
529
530
531
532
533
    tiny_config = copy.deepcopy(tiny_config)

    if any([model_arch.__name__.endswith(x) for x in ["ForCausalLM", "LMHeadModel"]]):
        tiny_config.is_encoder_decoder = False
        tiny_config.is_decoder = True

Yih-Dar's avatar
Yih-Dar committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    model = model_arch(config=tiny_config)
    model.save_pretrained(checkpoint_dir)
    model.from_pretrained(checkpoint_dir)

    return model


def fill_result_with_error(result, error, models_to_create):
    """Fill `result` with errors for all target model arch if we can't build processor"""

    result["error"] = error
    for framework in FRAMEWORKS:
        if framework in models_to_create:
            result[framework] = {}
            for model_arch in models_to_create[framework]:
                result[framework][model_arch.__name__] = {"model": None, "checkpoint": None, "error": error}

551
552
553
554
555
556
557
558
559
560
561
562
    result["processor"] = {type(p).__name__: p.__class__.__name__ for p in result["processor"]}


def upload_model(model_dir, organization):
    """Upload the tiny models"""

    arch_name = model_dir.split(os.path.sep)[-1]
    repo_name = f"tiny-random-{arch_name}"

    repo_exist = False
    error = None
    try:
563
        create_repo(repo_id=f"{organization}/{repo_name}", exist_ok=False, repo_type="model")
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    except Exception as e:
        error = e
        if "You already created" in str(e):
            error = None
            logger.warning("Remote repository exists and will be cloned.")
            repo_exist = True
            try:
                create_repo(repo_id=repo_name, organization=organization, exist_ok=True, repo_type="model")
            except Exception as e:
                error = e
    if error is not None:
        raise ValueError(error)

    with tempfile.TemporaryDirectory() as tmpdir:
        repo = Repository(local_dir=tmpdir, clone_from=f"{organization}/{repo_name}")
        repo.git_pull()
        shutil.copytree(model_dir, tmpdir, dirs_exist_ok=True)

        if repo_exist:
            # Open a PR on the existing Hub repo.
            hub_pr_url = upload_folder(
                folder_path=model_dir,
                repo_id=f"{organization}/{repo_name}",
                repo_type="model",
                commit_message=f"Update tiny models for {arch_name}",
                commit_description=f"Upload tiny models for {arch_name}",
                create_pr=True,
            )
            logger.warning(f"PR open in {hub_pr_url}")
        else:
            # Push to Hub repo directly
            repo.git_add(auto_lfs_track=True)
            repo.git_commit(f"Upload tiny models for {arch_name}")
            repo.git_push(blocking=True)  # this prints a progress bar with the upload
            logger.warning(f"Tiny models {arch_name} pushed to {organization}/{repo_name}")

Yih-Dar's avatar
Yih-Dar committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

def build_composite_models(config_class, output_dir):
    import tempfile

    from transformers import (
        BertConfig,
        BertLMHeadModel,
        BertModel,
        BertTokenizer,
        BertTokenizerFast,
        EncoderDecoderModel,
        GPT2Config,
        GPT2LMHeadModel,
        GPT2Tokenizer,
        GPT2TokenizerFast,
        SpeechEncoderDecoderModel,
        TFEncoderDecoderModel,
        TFVisionEncoderDecoderModel,
        VisionEncoderDecoderModel,
        VisionTextDualEncoderModel,
        ViTConfig,
        ViTFeatureExtractor,
        ViTModel,
        Wav2Vec2Config,
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )

    # These will be removed at the end if they are empty
    result = {"error": None, "warnings": []}

    if config_class.model_type == "encoder-decoder":
        encoder_config_class = BertConfig
        decoder_config_class = BertConfig
        encoder_processor = (BertTokenizerFast, BertTokenizer)
        decoder_processor = (BertTokenizerFast, BertTokenizer)
        encoder_class = BertModel
        decoder_class = BertLMHeadModel
        model_class = EncoderDecoderModel
        tf_model_class = TFEncoderDecoderModel
    elif config_class.model_type == "vision-encoder-decoder":
        encoder_config_class = ViTConfig
        decoder_config_class = GPT2Config
        encoder_processor = (ViTFeatureExtractor,)
        decoder_processor = (GPT2TokenizerFast, GPT2Tokenizer)
        encoder_class = ViTModel
        decoder_class = GPT2LMHeadModel
        model_class = VisionEncoderDecoderModel
        tf_model_class = TFVisionEncoderDecoderModel
    elif config_class.model_type == "speech-encoder-decoder":
        encoder_config_class = Wav2Vec2Config
        decoder_config_class = BertConfig
        encoder_processor = (Wav2Vec2Processor,)
        decoder_processor = (BertTokenizerFast, BertTokenizer)
        encoder_class = Wav2Vec2Model
        decoder_class = BertLMHeadModel
        model_class = SpeechEncoderDecoderModel
        tf_model_class = None
    elif config_class.model_type == "vision-text-dual-encoder":
        # Not encoder-decoder, but encoder-encoder. We just keep the same name as above to make code easier
        encoder_config_class = ViTConfig
        decoder_config_class = BertConfig
        encoder_processor = (ViTFeatureExtractor,)
        decoder_processor = (BertTokenizerFast, BertTokenizer)
        encoder_class = ViTModel
        decoder_class = BertModel
        model_class = VisionTextDualEncoderModel
        tf_model_class = None

    with tempfile.TemporaryDirectory() as tmpdir:
        try:
            # build encoder
            models_to_create = {"processor": encoder_processor, "pytorch": (encoder_class,), "tensorflow": []}
            encoder_output_dir = os.path.join(tmpdir, "encoder")
            build(encoder_config_class, models_to_create, encoder_output_dir)

            # build decoder
            models_to_create = {"processor": decoder_processor, "pytorch": (decoder_class,), "tensorflow": []}
            decoder_output_dir = os.path.join(tmpdir, "decoder")
            build(decoder_config_class, models_to_create, decoder_output_dir)

            # build encoder-decoder
            encoder_path = os.path.join(encoder_output_dir, encoder_class.__name__)
            decoder_path = os.path.join(decoder_output_dir, decoder_class.__name__)

            if config_class.model_type != "vision-text-dual-encoder":
                # Specify these explicitly for encoder-decoder like models, but not for `vision-text-dual-encoder` as it
                # has no decoder.
                decoder_config = decoder_config_class.from_pretrained(decoder_path)
                decoder_config.is_decoder = True
                decoder_config.add_cross_attention = True
                model = model_class.from_encoder_decoder_pretrained(
                    encoder_path,
                    decoder_path,
                    decoder_config=decoder_config,
                )
            elif config_class.model_type == "vision-text-dual-encoder":
                model = model_class.from_vision_text_pretrained(encoder_path, decoder_path)

            model_path = os.path.join(
                output_dir,
                f"{model_class.__name__}-{encoder_config_class.model_type}-{decoder_config_class.model_type}",
            )
            model.save_pretrained(model_path)

            if tf_model_class is not None:
                model = tf_model_class.from_pretrained(model_path, from_pt=True)
                model.save_pretrained(model_path)

            # copy the processors
            encoder_processor_path = os.path.join(encoder_output_dir, "processors")
            decoder_processor_path = os.path.join(decoder_output_dir, "processors")
            if os.path.isdir(encoder_processor_path):
                shutil.copytree(encoder_processor_path, model_path, dirs_exist_ok=True)
            if os.path.isdir(decoder_processor_path):
                shutil.copytree(decoder_processor_path, model_path, dirs_exist_ok=True)

            # fill `result`
718
            result["processor"] = tuple({x.__name__ for x in encoder_processor + decoder_processor})
Yih-Dar's avatar
Yih-Dar committed
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

            result["pytorch"] = {model_class.__name__: {"model": model_class.__name__, "checkpoint": model_path}}

            result["tensorflow"] = {}
            if tf_model_class is not None:
                result["tensorflow"] = {
                    tf_model_class.__name__: {"model": tf_model_class.__name__, "checkpoint": model_path}
                }

        except Exception as e:
            result["error"] = f"Failed to build models for {config_class.__name__}: {e}"

    if not result["error"]:
        del result["error"]
    if not result["warnings"]:
        del result["warnings"]

    return result


739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
def get_token_id_from_tokenizer(token_id_name, tokenizer, original_token_id):
    """Use `tokenizer` to get the values of `bos_token_id`, `eos_token_ids`, etc.

    The argument `token_id_name` should be a string ending with `_token_id`, and `original_token_id` should be an
    integer that will be return if `tokenizer` has no token corresponding to `token_id_name`.
    """

    token_id = original_token_id

    if not token_id_name.endswith("_token_id"):
        raise ValueError(f"`token_id_name` is {token_id_name}, which doesn't end with `_token_id`!")

    token = getattr(tokenizer, token_id_name.replace("_token_id", "_token"), None)
    if token is not None:
        if isinstance(tokenizer, PreTrainedTokenizerFast):
            token_id = tokenizer._convert_token_to_id_with_added_voc(token)
        else:
            token_id = tokenizer._convert_token_to_id(token)

    return token_id


def get_config_overrides(config_class, processors):
    config_overrides = {}

    # Check if there is any tokenizer (prefer fast version if any)
    tokenizer = None
    for processor in processors:
        if isinstance(processor, PreTrainedTokenizerFast):
            tokenizer = processor
            break
        elif isinstance(processor, PreTrainedTokenizer):
            tokenizer = processor

    if tokenizer is None:
        return config_overrides

    # Get some properties of the (already converted) tokenizer (smaller vocab size, special token ids, etc.)
    vocab_size = tokenizer.vocab_size
    config_overrides["vocab_size"] = vocab_size

    # Used to create a new model tester with `tokenizer.vocab_size` in order to get the (updated) special token ids.
    model_tester_kwargs = {"vocab_size": vocab_size}
    # CLIP-like models have `text_model_tester` and `vision_model_tester`, and we need to pass `vocab_size` to
    # `text_model_tester` via `text_kwargs`. The same trick is also necessary for `Flava`.
784
785
786
787
788
789
790
791
792
    if config_class.__name__ in [
        "CLIPConfig",
        "GroupViTConfig",
        "OwlViTConfig",
        "XCLIPConfig",
        "FlavaConfig",
        "BlipConfig",
        "Blip2Config",
    ]:
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
        del model_tester_kwargs["vocab_size"]
        model_tester_kwargs["text_kwargs"] = {"vocab_size": vocab_size}
    # `FSMTModelTester` accepts `src_vocab_size` and `tgt_vocab_size` but not `vocab_size`.
    elif config_class.__name__ == "FSMTConfig":
        del model_tester_kwargs["vocab_size"]
        model_tester_kwargs["src_vocab_size"] = tokenizer.src_vocab_size
        model_tester_kwargs["tgt_vocab_size"] = tokenizer.tgt_vocab_size

    _tiny_config = get_tiny_config(config_class, **model_tester_kwargs)

    # handle the possibility of `text_config` inside `_tiny_config` for clip-like models (`owlvit`, `groupvit`, etc.)
    if hasattr(_tiny_config, "text_config"):
        _tiny_config = _tiny_config.text_config

    # Collect values of some special token ids
    for attr in dir(_tiny_config):
        if attr.endswith("_token_id"):
            token_id = getattr(_tiny_config, attr)
            if token_id is not None:
                # Using the token id values from `tokenizer` instead of from `_tiny_config`.
                token_id = get_token_id_from_tokenizer(attr, tokenizer, original_token_id=token_id)
                config_overrides[attr] = token_id

    if config_class.__name__ == "FSMTConfig":
        config_overrides["src_vocab_size"] = tokenizer.src_vocab_size
        config_overrides["tgt_vocab_size"] = tokenizer.tgt_vocab_size
        # `FSMTConfig` has `DecoderConfig` as `decoder` attribute.
        config_overrides["decoder"] = configuration_fsmt.DecoderConfig(
            vocab_size=tokenizer.tgt_vocab_size, bos_token_id=config_overrides["eos_token_id"]
        )

    return config_overrides


Yih-Dar's avatar
Yih-Dar committed
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
def build(config_class, models_to_create, output_dir):
    """Create all models for a certain model type.

    Args:
        config_class (`PretrainedConfig`):
            A subclass of `PretrainedConfig` that is used to determine `models_to_create`.
        models_to_create (`dict`):
            A dictionary containing the processor/model classes that we want to create the instances. These models are
            of the same model type which is associated to `config_class`.
        output_dir (`str`):
            The directory to save all the checkpoints. Each model architecture will be saved in a subdirectory under
            it. Models in different frameworks with the same architecture will be saved in the same subdirectory.
    """

    if config_class.model_type in [
        "encoder-decoder",
        "vision-encoder-decoder",
        "speech-encoder-decoder",
        "vision-text-dual-encoder",
    ]:
        return build_composite_models(config_class, output_dir)

    result = {k: {} for k in models_to_create}

    # These will be removed at the end if they are empty
    result["error"] = None
    result["warnings"] = []

    # Build processors
    processor_classes = models_to_create["processor"]

    if len(processor_classes) == 0:
        error = f"No processor class could be found in {config_class.__name__}."
        fill_result_with_error(result, error, models_to_create)
        logger.error(result["error"])
        return result

    for processor_class in processor_classes:
865
        try:
866
            processor = build_processor(config_class, processor_class, allow_no_checkpoint=True)
867
868
869
870
871
872
873
            if processor is not None:
                result["processor"][processor_class] = processor
        except Exception as e:
            error = f"Failed to build processor for {processor_class.__name__}: {e}"
            fill_result_with_error(result, error, models_to_create)
            logger.error(result["error"])
            return result
Yih-Dar's avatar
Yih-Dar committed
874
875
876
877
878
879
880
881
882
883

    if len(result["processor"]) == 0:
        error = f"No processor could be built for {config_class.__name__}."
        fill_result_with_error(result, error, models_to_create)
        logger.error(result["error"])
        return result

    try:
        tiny_config = get_tiny_config(config_class)
    except Exception as e:
884
        error = f"Failed to get tiny config for {config_class.__name__}: {e}"
Yih-Dar's avatar
Yih-Dar committed
885
886
887
888
889
890
891
        fill_result_with_error(result, error, models_to_create)
        logger.error(result["error"])
        return result

    # Convert the processors (reduce vocabulary size, smaller image size, etc.)
    processors = list(result["processor"].values())
    processor_output_folder = os.path.join(output_dir, "processors")
892
893
894
895
896
    try:
        processors = convert_processors(processors, tiny_config, processor_output_folder, result)
    except Exception as e:
        error = f"Failed to convert the processors: {e}"
        result["warnings"].append(error)
Yih-Dar's avatar
Yih-Dar committed
897

898
899
    if len(processors) == 0:
        error = f"No processor is returned by `convert_processors` for {config_class.__name__}."
Yih-Dar's avatar
Yih-Dar committed
900
901
902
903
        fill_result_with_error(result, error, models_to_create)
        logger.error(result["error"])
        return result

904
905
906
907
908
909
910
911
912
913
914
915
916
    try:
        config_overrides = get_config_overrides(config_class, processors)
    except Exception as e:
        error = f"Failure occurs while calling `get_config_overrides`: {e}"
        fill_result_with_error(result, error, models_to_create)
        logger.error(result["error"])
        return result

    # Just for us to see this easily in the report
    if "vocab_size" in config_overrides:
        result["vocab_size"] = config_overrides["vocab_size"]

    # Update attributes that `vocab_size` involves
Yih-Dar's avatar
Yih-Dar committed
917
918
919
    for k, v in config_overrides.items():
        if hasattr(tiny_config, k):
            setattr(tiny_config, k, v)
920
        # So far, we only have to deal with `text_config`, as `config_overrides` contains text-related attributes only.
Yih-Dar's avatar
Yih-Dar committed
921
922
923
924
925
926
927
928
929
930
931
932
933
934
        elif (
            hasattr(tiny_config, "text_config")
            and tiny_config.text_config is not None
            and hasattr(tiny_config.text_config, k)
        ):
            setattr(tiny_config.text_config, k, v)
            # If `text_config_dict` exists, we need to update its value here too in order to # make
            # `save_pretrained -> from_pretrained` work.
            if hasattr(tiny_config, "text_config_dict"):
                tiny_config.text_config_dict[k] = v

    if result["warnings"]:
        logger.warning(result["warnings"])

935
936
937
    # update `result["processor"]`
    result["processor"] = {type(p).__name__: p.__class__.__name__ for p in processors}

Yih-Dar's avatar
Yih-Dar committed
938
939
940
941
942
943
944
945
946
947
948
949
950
    for pytorch_arch in models_to_create["pytorch"]:
        result["pytorch"][pytorch_arch.__name__] = {}
        error = None
        try:
            model = build_model(pytorch_arch, tiny_config, output_dir=output_dir)
        except Exception as e:
            model = None
            error = f"Failed to create the pytorch model for {pytorch_arch}: {e}"

        result["pytorch"][pytorch_arch.__name__]["model"] = model.__class__.__name__ if model is not None else None
        result["pytorch"][pytorch_arch.__name__]["checkpoint"] = (
            get_checkpoint_dir(output_dir, pytorch_arch) if model is not None else None
        )
951
        if error is not None:
Yih-Dar's avatar
Yih-Dar committed
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
            result["pytorch"][pytorch_arch.__name__]["error"] = error
            logger.error(f"{pytorch_arch.__name__}: {error}")

    for tensorflow_arch in models_to_create["tensorflow"]:
        # Make PT/TF weights compatible
        pt_arch_name = tensorflow_arch.__name__[2:]  # Remove `TF`
        pt_arch = getattr(transformers_module, pt_arch_name)

        result["tensorflow"][tensorflow_arch.__name__] = {}
        error = None
        if pt_arch.__name__ in result["pytorch"] and result["pytorch"][pt_arch.__name__]["checkpoint"] is not None:
            ckpt = get_checkpoint_dir(output_dir, pt_arch)
            # Use the same weights from PyTorch.
            try:
                model = tensorflow_arch.from_pretrained(ckpt, from_pt=True)
                model.save_pretrained(ckpt)
            except Exception as e:
                # Conversion may fail. Let's not create a model with different weights to avoid confusion (for now).
                model = None
                error = f"Failed to convert the pytorch model to the tensorflow model for {pt_arch}: {e}"
        else:
            try:
                model = build_model(tensorflow_arch, tiny_config, output_dir=output_dir)
            except Exception as e:
                model = None
                error = f"Failed to create the tensorflow model for {tensorflow_arch}: {e}"

        result["tensorflow"][tensorflow_arch.__name__]["model"] = (
            model.__class__.__name__ if model is not None else None
        )
        result["tensorflow"][tensorflow_arch.__name__]["checkpoint"] = (
            get_checkpoint_dir(output_dir, tensorflow_arch) if model is not None else None
        )
985
        if error is not None:
Yih-Dar's avatar
Yih-Dar committed
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            result["tensorflow"][tensorflow_arch.__name__]["error"] = error
            logger.error(f"{tensorflow_arch.__name__}: {error}")

    if not result["error"]:
        del result["error"]
    if not result["warnings"]:
        del result["warnings"]

    return result


def build_failed_report(results, include_warning=True):
    failed_results = {}
    for config_name in results:
        if "error" in results[config_name]:
            if config_name not in failed_results:
                failed_results[config_name] = {}
            failed_results[config_name] = {"error": results[config_name]["error"]}

        if include_warning and "warnings" in results[config_name]:
            if config_name not in failed_results:
                failed_results[config_name] = {}
            failed_results[config_name]["warnings"] = results[config_name]["warnings"]

        for framework in FRAMEWORKS:
            if framework not in results[config_name]:
                continue
            for arch_name in results[config_name][framework]:
                if "error" in results[config_name][framework][arch_name]:
                    if config_name not in failed_results:
                        failed_results[config_name] = {}
                    if framework not in failed_results[config_name]:
                        failed_results[config_name][framework] = {}
                    if arch_name not in failed_results[config_name][framework]:
                        failed_results[config_name][framework][arch_name] = {}
                    error = results[config_name][framework][arch_name]["error"]
                    failed_results[config_name][framework][arch_name]["error"] = error

    return failed_results


def build_simple_report(results):
    text = ""
    failed_text = ""
    for config_name in results:
        for framework in FRAMEWORKS:
            if framework not in results[config_name]:
                continue
            for arch_name in results[config_name][framework]:
                if "error" in results[config_name][framework][arch_name]:
                    result = results[config_name][framework][arch_name]["error"]
                    failed_text += f"{arch_name}: {result}\n"
                else:
                    result = "OK"
                text += f"{arch_name}: {result}\n"

    return text, failed_text


if __name__ == "__main__":
    clone_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
    if os.getcwd() != clone_path:
        raise ValueError(f"This script should be run from the root of the clone of `transformers` {clone_path}")

    _pytorch_arch_mappings = [
        x
        for x in dir(transformers_module)
        if x.startswith("MODEL_") and x.endswith("_MAPPING") and x != "MODEL_NAMES_MAPPING"
    ]
    _tensorflow_arch_mappings = [
        x for x in dir(transformers_module) if x.startswith("TF_MODEL_") and x.endswith("_MAPPING")
    ]
    # _flax_arch_mappings = [x for x in dir(transformers_module) if x.startswith("FLAX_MODEL_") and x.endswith("_MAPPING")]

    pytorch_arch_mappings = [getattr(transformers_module, x) for x in _pytorch_arch_mappings]
    tensorflow_arch_mappings = [getattr(transformers_module, x) for x in _tensorflow_arch_mappings]
    # flax_arch_mappings = [getattr(transformers_module, x) for x in _flax_arch_mappings]

    unexportable_model_architectures = []

    ds = load_dataset("wikitext", "wikitext-2-raw-v1")
    training_ds = ds["train"]
    testing_ds = ds["test"]

    def list_str(values):
        return values.split(",")

    parser = argparse.ArgumentParser()
    parser.add_argument("--all", action="store_true", help="Will create all tiny models.")
    parser.add_argument(
        "--no_check",
        action="store_true",
        help="If set, will not check the validity of architectures. Use with caution.",
    )
    parser.add_argument(
        "-m",
        "--model_types",
        type=list_str,
        help="Comma-separated list of model type(s) from which the tiny models will be created.",
    )
1086
1087
1088
1089
1090
1091
1092
    parser.add_argument("--upload", action="store_true", help="If to upload the created tiny models to the Hub.")
    parser.add_argument(
        "--organization",
        default=None,
        type=str,
        help="The organization on the Hub to which the tiny models will be uploaded.",
    )
Yih-Dar's avatar
Yih-Dar committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    parser.add_argument("output_path", type=Path, help="Path indicating where to store generated model.")

    args = parser.parse_args()

    if not args.all and not args.model_types:
        raise ValueError("Please provide at least one model type or pass `--all` to export all architectures.")

    config_classes = CONFIG_MAPPING.values()
    if not args.all:
        config_classes = [CONFIG_MAPPING[model_type] for model_type in args.model_types]

    # A map from config classes to tuples of processors (tokenizer, feature extractor, processor) classes
    processor_type_map = {c: get_processor_types_from_config_class(c) for c in config_classes}

    to_create = {
        c: {
            "processor": processor_type_map[c],
            "pytorch": get_architectures_from_config_class(c, pytorch_arch_mappings),
            "tensorflow": get_architectures_from_config_class(c, tensorflow_arch_mappings),
            # "flax": get_architectures_from_config_class(c, flax_arch_mappings),
        }
        for c in config_classes
    }

    results = {}
    for c, models_to_create in list(to_create.items()):
        print(f"Create models for {c.__name__} ...")
        result = build(c, models_to_create, output_dir=os.path.join(args.output_path, c.model_type))
        results[c.__name__] = result
        print("=" * 40)

    with open("tiny_model_creation_report.json", "w") as fp:
        json.dump(results, fp, indent=4)

    # Build the failure report
    failed_results = build_failed_report(results)
    with open("failed_report.json", "w") as fp:
        json.dump(failed_results, fp, indent=4)

    # Build the failure report
    simple_report, failed_report = build_simple_report(results)
    with open("simple_report.txt", "w") as fp:
        fp.write(simple_report)

    with open("simple_failed_report.txt", "w") as fp:
        fp.write(failed_report)
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

    if args.upload:
        if args.organization is None:
            raise ValueError("The argument `organization` could not be `None`. No model is uploaded")

        to_upload = []
        for model_type in os.listdir(args.output_path):
            for arch in os.listdir(os.path.join(args.output_path, model_type)):
                if arch == "processors":
                    continue
                to_upload.append(os.path.join(args.output_path, model_type, arch))
        to_upload = sorted(to_upload)

        upload_results = {}
        if len(to_upload) > 0:
            for model_dir in to_upload:
                try:
                    upload_model(model_dir, args.organization)
                except Exception as e:
                    error = f"Failed to upload {model_dir}: {e}"
                    logger.error(error)
                    upload_results[model_dir] = error

        with open("failed_uploads.json", "w") as fp:
            json.dump(upload_results, fp, indent=4)