test_tokenization_llama.py 34.2 KB
Newer Older
1
# coding=utf-8
Arthur's avatar
Arthur committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
17
import pickle
Arthur's avatar
Arthur committed
18
19
20
21
22
23
24
25
26
27
import shutil
import tempfile
import unittest

from datasets import load_dataset

from transformers import (
    SPIECE_UNDERLINE,
    AddedToken,
    LlamaTokenizer,
28
    LlamaTokenizerFast,
Arthur's avatar
Arthur committed
29
30
    is_torch_available,
)
31
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
Arthur's avatar
Arthur committed
32
33
34
from transformers.testing_utils import (
    get_tests_dir,
    nested_simplify,
35
    require_jinja,
Arthur's avatar
Arthur committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    slow,
)

from ...test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")


if is_torch_available():
    pass


@require_sentencepiece
@require_tokenizers
class LlamaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
55
    from_pretrained_id = ["hf-internal-testing/llama-tokenizer", "meta-llama/Llama-2-7b-hf"]
Arthur's avatar
Arthur committed
56
    tokenizer_class = LlamaTokenizer
57
58
    rust_tokenizer_class = LlamaTokenizerFast

Arthur's avatar
Arthur committed
59
60
61
62
63
64
65
66
67
68
69
70
    test_rust_tokenizer = False
    test_sentencepiece = True
    from_pretrained_kwargs = {}

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = LlamaTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.save_pretrained(self.tmpdirname)

71
72
73
74
    def get_tokenizers(self, **kwargs):
        kwargs.update({"pad_token": "<PAD>"})
        return super().get_tokenizers(**kwargs)

Arthur's avatar
Arthur committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def test_full_tokenizer(self):
        tokenizer = LlamaTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [285, 46, 10, 170, 382],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "é",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

    @unittest.skip("Let's wait for the fast tokenizer!")
    def test_save_pretrained(self):
        self.tokenizers_list += (self.rust_tokenizer_class, "hf-internal-testing/llama-tokenizer", {})
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

    @require_torch
    def test_batch_tokenization(self):
        if not self.test_seq2seq:
            return

        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Longer text that will definitely require truncation.
                text = [
                    " UN Chief Says There Is No Military Solution in Syria",
                    " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
                    " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
                    " will only worsen the violence and misery for millions of people.",
                ]
                try:
                    batch = tokenizer(
                        text=text,
                        max_length=3,
                        max_target_length=10,
                        return_tensors="pt",
                    )
                except NotImplementedError:
                    return
                self.assertEqual(batch.input_ids.shape[1], 3)
                # max_target_length will default to max_length if not specified
                batch = tokenizer(text, max_length=3, return_tensors="pt")
                self.assertEqual(batch.input_ids.shape[1], 3)

                batch_encoder_only = tokenizer(text=text, max_length=3, max_target_length=10, return_tensors="pt")
                self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
                self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
                self.assertNotIn("decoder_input_ids", batch_encoder_only)

    @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.")
    def test_save_slow_from_fast_and_reload_fast(self):
        pass

    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                added_tokens = [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                r_output = tokenizer_r.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertTrue(special_token_id in r_output)

                if self.test_slow_tokenizer:
                    tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name,
                        additional_special_tokens=added_tokens,
                        **kwargs,  # , from_slow=True <- unfortunately too slow to convert
                    )
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs
                    )

                    p_output = tokenizer_p.encode("Hey this is a <special> token")

                    cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                    self.assertEqual(p_output, r_output)
                    self.assertEqual(cr_output, r_output)
                    self.assertTrue(special_token_id in p_output)
                    self.assertTrue(special_token_id in cr_output)

    @slow
    def test_tokenizer_integration(self):
286
        expected_encoding = {'input_ids': [[1, 4103, 689, 414, 313, 24784, 368, 2998, 408, 282, 3637, 25350, 29899, 9067, 414, 322, 282, 3637, 25350, 29899, 1457, 3018, 1312, 29899, 2151, 29897, 8128, 2498, 29899, 15503, 4220, 6956, 1973, 313, 13635, 29911, 29892, 402, 7982, 29899, 29906, 29892, 1528, 13635, 29911, 29874, 29892, 1060, 26369, 29892, 6652, 309, 29933, 814, 29892, 1060, 29931, 6779, 11410, 363, 18385, 17088, 7634, 11235, 313, 25103, 29965, 29897, 322, 18385, 17088, 28203, 313, 25103, 29954, 29897, 411, 975, 29871, 29941, 29906, 29974, 758, 3018, 1312, 4733, 297, 29871, 29896, 29900, 29900, 29974, 10276, 322, 6483, 1006, 3372, 3097, 1546, 435, 1165, 29892, 10772, 29911, 25350, 322, 323, 6073, 17907, 29889], [1, 350, 20161, 338, 8688, 304, 758, 29899, 14968, 6483, 21000, 8684, 284, 22540, 515, 443, 29880, 24025, 1426, 491, 14002, 368, 4195, 292, 373, 1716, 2175, 322, 1492, 3030, 297, 599, 15359, 29889], [1, 450, 4996, 17354, 1701, 29916, 432, 17204, 975, 278, 17366, 11203, 29889]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}  # fmt: skip
Arthur's avatar
Arthur committed
287
288
289
290
291
292
293
294

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="hf-internal-testing/llama-tokenizer",
            revision="0984d03108b1a041ed679bd253b6519b7e1a4778",
            padding=False,
        )

295
296
297
298
299
300
301
    def test_picklable(self):
        with tempfile.NamedTemporaryFile() as f:
            shutil.copyfile(SAMPLE_VOCAB, f.name)
            tokenizer = LlamaTokenizer(f.name, keep_accents=True)
            pickled_tokenizer = pickle.dumps(tokenizer)
        pickle.loads(pickled_tokenizer)

302
303
304
305
306
307
308
309
    @unittest.skip("worker 'gw4' crashed on CI, passing locally.")
    def test_pickle_subword_regularization_tokenizer(self):
        pass

    @unittest.skip("worker 'gw4' crashed on CI, passing locally.")
    def test_subword_regularization_tokenizer(self):
        pass

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    def test_add_prefix_space(self):
        pretrained_name = "hf-internal-testing/llama-tokenizer-non-normalized"
        inputs = "Hey how are you doing"
        EXPECTED_WITH_SPACE = [1, 18637, 920, 526, 366, 2599]
        EXPECTED_WO_SPACE = [1, 29950, 1032, 920, 526, 366, 2599]

        slow_ = self.tokenizer_class.from_pretrained(pretrained_name, add_prefix_space=False, legacy=False)
        fast_ = self.rust_tokenizer_class.from_pretrained(pretrained_name, add_prefix_space=False, legacy=False)
        self.assertEqual(slow_.encode(inputs), EXPECTED_WO_SPACE)
        self.assertEqual(slow_.encode(inputs), fast_.encode(inputs))
        self.assertEqual(slow_.tokenize(inputs), ["H", "ey", "▁how", "▁are", "▁you", "▁doing"])
        self.assertEqual(slow_.decode(EXPECTED_WO_SPACE, skip_special_tokens=True), inputs)
        self.assertEqual(
            slow_.decode(EXPECTED_WO_SPACE, skip_special_tokens=True),
            fast_.decode(EXPECTED_WO_SPACE, skip_special_tokens=True),
        )

        slow_ = self.tokenizer_class.from_pretrained(pretrained_name, add_prefix_space=True, legacy=False)
        fast_ = self.rust_tokenizer_class.from_pretrained(pretrained_name, add_prefix_space=True, legacy=False)
        self.assertEqual(slow_.encode(inputs), EXPECTED_WITH_SPACE)
        self.assertEqual(slow_.encode(inputs), fast_.encode(inputs))
        self.assertEqual(slow_.tokenize(inputs), ["▁Hey", "▁how", "▁are", "▁you", "▁doing"])
        self.assertEqual(slow_.decode(EXPECTED_WITH_SPACE, skip_special_tokens=True), inputs)
        self.assertEqual(
            slow_.decode(EXPECTED_WITH_SPACE, skip_special_tokens=True),
            fast_.decode(EXPECTED_WITH_SPACE, skip_special_tokens=True),
        )

Arthur's avatar
Arthur committed
338
339
340
341
342
343
344

@require_torch
@require_sentencepiece
@require_tokenizers
class LlamaIntegrationTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
345
        checkpoint_name = "hf-internal-testing/llama-tokenizer-non-normalized"
346
347
        cls.tokenizer: LlamaTokenizer = LlamaTokenizer.from_pretrained(checkpoint_name)
        cls.rust_tokenizer = LlamaTokenizerFast.from_pretrained(checkpoint_name)
Arthur's avatar
Arthur committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        return cls

    @require_torch
    def integration_tests(self):
        inputs = self.tokenizer(
            ["The following string should be properly encoded: Hello.", "But ird and ปี   ird   ด"],
            return_tensors="pt",
        )

        self.assertEqual(
            nested_simplify(inputs),
            {
                "input_ids": [
                    [1, 450, 1494, 1347, 881, 367, 6284, 18511, 29901, 15043, 29889],
                    [1, 1205, 29871, 1823, 322, 29871, 31010, 30691, 1678, 1823, 1678, 30718],
                ],
                "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
            },
        )

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    def test_fast_special_tokens(self):
        slow_tokenizer = self.tokenizer
        fast_tokenizer = self.rust_tokenizer
        slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
        assert slow == [1, 319, 4559, 1243]

        fast_tokenizer.add_eos_token = False
        fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
        assert fast == [1, 319, 4559, 1243]

        fast_tokenizer.add_eos_token = True
        fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
        assert fast == [1, 319, 4559, 1243, 2]

        slow_tokenizer.add_eos_token = True
        slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
        assert slow == [1, 319, 4559, 1243, 2]

        fast_tokenizer = LlamaTokenizerFast.from_pretrained(
            "hf-internal-testing/llama-tokenizer", add_eos_token=True, add_bos_token=False
        )
        fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
        assert fast == [319, 4559, 1243, 2]

392
        slow_tokenizer = LlamaTokenizer.from_pretrained(
393
394
            "hf-internal-testing/llama-tokenizer", add_eos_token=True, add_bos_token=False
        )
395
        slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
396
397
398
399
400
        assert slow == [319, 4559, 1243, 2]

        self.tokenizer.add_eos_token = False
        self.rust_tokenizer.add_eos_token = False

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    @slow
    def test_conversion(self):
        # This is excruciatingly slow since it has to recreate the entire merge
        # list from the original vocabulary in spm
        self.rust_tokenizer.save_pretrained("./out")
        with tempfile.TemporaryDirectory() as dirname:
            self.rust_tokenizer.save_pretrained(dirname)

            with open(os.path.join(dirname, "tokenizer.json"), "r") as f:
                old_serialized = f.read()

        new_tokenizer = convert_slow_tokenizer(self.tokenizer)
        with tempfile.NamedTemporaryFile() as f:
            new_tokenizer.save(f.name)
            # Re-opening since `f` is in bytes.
            new_serialized = open(f.name, "r").read()
            with open("out_tokenizer.json", "w") as g:
                g.write(new_serialized)

            self.assertEqual(old_serialized, new_serialized)

Arthur's avatar
Arthur committed
422
423
424
425
426
427
428
429
430
431
    def test_simple_encode_decode(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer

        self.assertEqual(pyth_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
        self.assertEqual(rust_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
        self.assertEqual(pyth_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")
        self.assertEqual(rust_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")

        # bytefallback showcase
432
433
        self.assertEqual(pyth_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392])  # fmt: skip
        self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392])  # fmt: skip
Arthur's avatar
Arthur committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        self.assertEqual(
            pyth_tokenizer.decode(
                [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
            ),
            "生活的真谛是",
        )
        self.assertEqual(
            rust_tokenizer.decode(
                [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
            ),
            "生活的真谛是",
        )

        # Inner spaces showcase
        self.assertEqual(pyth_tokenizer.encode("Hi  Hello"), [1, 6324, 29871, 15043])
        self.assertEqual(rust_tokenizer.encode("Hi  Hello"), [1, 6324, 29871, 15043])
        self.assertEqual(pyth_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi  Hello")
        self.assertEqual(rust_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi  Hello")

        self.assertEqual(pyth_tokenizer.encode("Hi   Hello"), [1, 6324, 259, 15043])
        self.assertEqual(rust_tokenizer.encode("Hi   Hello"), [1, 6324, 259, 15043])
        self.assertEqual(pyth_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi   Hello")
        self.assertEqual(rust_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi   Hello")

        self.assertEqual(pyth_tokenizer.encode(""), [1])
        self.assertEqual(rust_tokenizer.encode(""), [1])

        self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
        self.assertEqual(rust_tokenizer.encode(" "), [1, 259])

        self.assertEqual(pyth_tokenizer.encode("  "), [1, 1678])
        self.assertEqual(rust_tokenizer.encode("  "), [1, 1678])

        self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
        self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    def test_no_differences_showcase(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer
        self.assertEqual(pyth_tokenizer.encode(""), [1])
        self.assertEqual(rust_tokenizer.encode(""), [1])

        self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
        self.assertEqual(rust_tokenizer.encode(" "), [1, 259])

        self.assertEqual(pyth_tokenizer.encode("  "), [1, 1678])
        self.assertEqual(rust_tokenizer.encode("  "), [1, 1678])

        self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
        self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])

Arthur's avatar
Arthur committed
485
486
487
        self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
        self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])

488
489
490
    def test_no_differences_decode(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer
Arthur's avatar
Arthur committed
491
492
493
494
495
496
497

        self.assertEqual(pyth_tokenizer.decode([869]), ".")
        self.assertEqual(rust_tokenizer.decode([869]), ".")

        self.assertEqual(pyth_tokenizer.decode([30112, 869]), "ا .")
        self.assertEqual(rust_tokenizer.decode([30112, 869]), "ا .")

498
499
500
501
502
503
504
505
506
    def test_no_differences_special_tokens(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer
        self.assertEqual(pyth_tokenizer.encode(""), [1])
        self.assertEqual(rust_tokenizer.encode(""), [1])

        self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
        self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])

Arthur's avatar
Arthur committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    @unittest.skipIf(
        os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
        "RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
    )
    def test_integration_test_xnli(self):
        import tqdm

        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer

        dataset = load_dataset("code_x_glue_ct_code_to_text", "go")
        for item in tqdm.tqdm(dataset["validation"]):
            string = item["code"]
            encoded1 = pyth_tokenizer.encode(string)
            encoded2 = rust_tokenizer.encode(string)

            self.assertEqual(encoded1, encoded2)

525
526
            decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
            decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
Arthur's avatar
Arthur committed
527
528
529
530
531
532
533
534
535
536
537
538

            self.assertEqual(decoded1, decoded2)

        dataset = load_dataset("xnli", "all_languages")

        for item in tqdm.tqdm(dataset["train"]):
            for string in item["premise"].values():
                encoded1 = pyth_tokenizer.encode(string)
                encoded2 = rust_tokenizer.encode(string)

                self.assertEqual(encoded1, encoded2)

539
540
                decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
                decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
Arthur's avatar
Arthur committed
541
542

                self.assertEqual(decoded1, decoded2)
543

544
545
546
    def test_special_token_special_word(self):
        # the word inform should be split as ['in', 'form']
        tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", legacy=False)
547
        tokenizer.add_tokens([AddedToken("<REPR_END>", rstrip=True, lstrip=True)], special_tokens=False)
548
549
550
551
552
553
554
        out1 = tokenizer.decode(
            tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
        )
        self.assertEqual(out1, "<REPR_END>inform")
        out2 = tokenizer.decode(
            tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=True
        )
555
556
        # decoding strips the added prefix space.
        self.assertEqual(out2, "<REPR_END> inform")
557
        input_ids = tokenizer.encode("<REPR_END>inform", add_special_tokens=False)
558
        self.assertEqual(input_ids, [29871, 32000, 262, 689])  # 29871 is the spiece underline, '▁' added as it should
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

        out2 = tokenizer.decode(
            tokenizer.encode(" <REPR_END> inform", add_special_tokens=False), spaces_between_special_tokens=False
        )
        # TODO @ArthurZ currently we strip left and right, so this will not keep the spaces
        self.assertEqual(out2, "<REPR_END>inform")

        ### Let's make sure decoding does not add extra spaces here and there
        # TODO @ArthurZ this should be affected by the lstrip/rstrip/single word /normalize refactoring
        # Since currently we always strip left and right of the token, results are as such
        input_ids = tokenizer.encode("<s> Hello<s>how", add_special_tokens=False)
        self.assertEqual(input_ids, [1, 15043, 1, 3525])
        tokens = tokenizer.tokenize("<s> Hello<s>how", add_special_tokens=False)
        self.assertEqual(tokens, ["<s>", "▁Hello", "<s>", "how"])
        decoded_tokens = tokenizer.decode(input_ids)
        self.assertEqual(decoded_tokens, "<s> Hello<s>how")

        # Let's make sure that if there are any spaces, we don't remove them!
        input_ids = tokenizer.encode(" <s> Hello<s> how", add_special_tokens=False)
        self.assertEqual(input_ids, [259, 1, 15043, 1, 920])
        tokens = tokenizer.tokenize(" <s> Hello<s> how", add_special_tokens=False)
        self.assertEqual(tokens, ["▁▁", "<s>", "▁Hello", "<s>", "▁how"])
        decoded_tokens = tokenizer.decode(input_ids)
        self.assertEqual(decoded_tokens, " <s> Hello<s> how")

584
585
586
587
588
589
590
591
592
    def test_some_edge_cases(self):
        tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", legacy=False)

        sp_tokens = tokenizer.sp_model.encode("<s>>", out_type=str)
        self.assertEqual(sp_tokens, ["<", "s", ">>"])
        tokens = tokenizer.tokenize("<s>>")
        self.assertNotEqual(sp_tokens, tokens)
        self.assertEqual(tokens, ["<s>", ">"])

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        tokens = tokenizer.tokenize("")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))

        tokens = tokenizer.tokenize(" ")
        self.assertEqual(tokens, ["▁▁"])
        # a dummy prefix space is not added by the sp_model as it was de-activated
        self.assertEqual(tokens, tokenizer.sp_model.encode("  ", out_type=str))

        tokens = tokenizer.tokenize("▁")
        self.assertEqual(tokens, ["▁▁"])
        # a dummy prefix space is not added by the sp_model as it was de-activated
        self.assertEqual(tokens, tokenizer.sp_model.encode("▁▁", out_type=str))

        tokens = tokenizer.tokenize(" ▁")
        self.assertEqual(tokens, ["▁▁▁"])
        # a dummy prefix space is not added by the sp_model as it was de-activated
        self.assertEqual(tokens, tokenizer.sp_model.encode("▁▁▁", out_type=str))

612
613
614
615
616
617
618
619
620
621
622
623
624
    def test_fast_post_processor(self):
        tokenizer = LlamaTokenizerFast(
            SAMPLE_VOCAB, eos_token=None, bos_token=None, add_bos_token=False, add_eos_token=False
        )
        tokenizer.encode(" Hey ")

        with self.assertRaises(ValueError):
            tokenizer = LlamaTokenizerFast(
                SAMPLE_VOCAB, bos_token=None, eos_token="<s>", add_bos_token=True, add_eos_token=False
            )
        with self.assertRaises(ValueError):
            tokenizer = LlamaTokenizerFast(SAMPLE_VOCAB, eos_token=None, add_bos_token=True, add_eos_token=True)

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    @require_jinja
    def test_tokenization_for_chat(self):
        tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", legacy=False)

        test_chats = [
            [{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}],
            [
                {"role": "system", "content": "You are a helpful chatbot."},
                {"role": "user", "content": "Hello!"},
                {"role": "assistant", "content": "Nice to meet you."},
            ],
            [{"role": "user", "content": "Hello!"}],
        ]
        # Matt: The third test case tests the default system message, but if this is ever changed in the
        #       class/repo code then that test will fail, and the case will need to be updated.
        tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
        # fmt: off
        expected_tokens = [
            [1, 29961, 25580, 29962, 3532, 14816, 29903, 6778, 13, 3492, 526, 263, 8444, 13563, 7451, 29889, 13, 29966, 829, 14816, 29903, 6778, 13, 13, 10994, 29991, 518, 29914, 25580, 29962],
            [1, 29961, 25580, 29962, 3532, 14816, 29903, 6778, 13, 3492, 526, 263, 8444, 13563, 7451, 29889, 13, 29966, 829, 14816, 29903, 6778, 13, 13, 10994, 29991, 518, 29914, 25580, 29962, 20103, 304, 5870, 366, 29889, 29871, 2],
645
            [1, 29961, 25580, 29962, 15043, 29991, 518, 29914, 25580, 29962]
646
647
648
649
650
        ]
        # fmt: on
        for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
            self.assertListEqual(tokenized_chat, expected_tokens)

651
652
653
654
655
656
657
658
659
660
661

@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
    """
    A class that regroups important test to make sure that we properly handle the special tokens.
    """

    @classmethod
    def setUpClass(cls):
        tokenizer = LlamaTokenizer(SAMPLE_VOCAB, extra_ids=0, add_bos_token=False, legacy=False)
662
        tokenizer.add_special_tokens({"additional_special_tokens": [AddedToken("<s>", rstrip=False, lstrip=False)]})
663
664
665
666
667
668
669
670
671
        cls.tokenizer = tokenizer
        return cls

    def test_add_dummy_prefix(self):
        # make sure `'▁'` is prepended, and outputs match sp_model's
        # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute
        input_ids = self.tokenizer.encode(". Hello")
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode(". Hello")
672
        self.assertEqual(input_ids, [7] + sp_encode)
673
674
675
        tokens = self.tokenizer.tokenize(". Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

676
677
678
679
680
681
682
683
684
685
686
687
        tokens = self.tokenizer.tokenize("")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str))

        tokens = self.tokenizer.tokenize(" ")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str))

        tokens = self.tokenizer.tokenize("▁")
        self.assertEqual(tokens, [])
        self.assertEqual(tokens, self.tokenizer.sp_model.encode("▁", out_type=str))

688
689
690
691
692
693
694
    def test_remove_extra_whitespaces(self):
        # make sure the extra spaces are eaten. Since the sample vocab does not have
        # `______`. sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute is set to False

        input_ids = self.tokenizer.encode("       . Hello")
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode("       . Hello")
695
        self.assertEqual(input_ids, [7] + sp_encode)
696
697
698
699
700
701
702
        tokens = self.tokenizer.tokenize(" . Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

        # `'▁'` is also a whitespace
        input_ids = self.tokenizer.encode("▁He is not")
        self.assertEqual(input_ids, [156, 46, 44])
        tokens = self.tokenizer.tokenize("▁He is not")
703
704
705
706
707
        sp_encode = [
            self.tokenizer.sp_model.piece_to_id("▁He"),
            self.tokenizer.sp_model.piece_to_id("▁is"),
            self.tokenizer.sp_model.piece_to_id("▁not"),
        ]
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
        self.assertEqual(input_ids, sp_encode)
        self.assertEqual(tokens, ["▁He", "▁is", "▁not"])  # no extra space added

        input_ids = self.tokenizer.encode("▁He is not<s>             ▁He")
        self.assertEqual(input_ids, [156, 46, 44, 1, 156])
        tokens = self.tokenizer.tokenize("▁He is not<s>              ▁He")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not", "<s>", "▁He"])  # spaces are eaten by spm + our strip
        # make sure that the output after the extra id is the same as if
        # extra_id was not there
        input_ids = self.tokenizer.encode("▁He is not             ▁He")
        self.assertEqual(input_ids, [156, 46, 44, 156])
        tokens = self.tokenizer.tokenize("▁He is not              ▁He")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"])  # spaces are eaten by spm even if not start

    def test_character_after_special_token(self):
        # Make sure that `tokenizer.tokenize` is similar to
        # adding the equivalent special token to the vocab
        input_ids = self.tokenizer.encode("Hey <s>I")
        self.assertEqual(input_ids, [156, 30, 1, 100])
        sp_encode = self.tokenizer.sp_model.encode("Hey .I")
        # the last token should be 100
        self.assertEqual(input_ids[-1], sp_encode[-1])
        tokens = self.tokenizer.tokenize("<s>I")
        self.assertEqual(tokens, ["<s>", "I"])

        input_ids = self.tokenizer.encode("Hello, <s>,")
        self.assertEqual(input_ids, [156, 86, 20, 3, 1, 3])
        tokens = self.tokenizer.tokenize("Hello, <s>,")
        self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<s>", ","])

    def test_special_tokens_strip(self):
        input_ids = self.tokenizer.encode(" <s> ,")
        self.assertEqual(input_ids, [1, 7, 3])
        tokens = self.tokenizer.tokenize(" <s> ,")
        # spaces are eaten by rstrip / lstrip + spm sp_model.encode("  ") = []
        self.assertEqual(tokens, ["<s>", "▁", ","])

        input_ids = self.tokenizer.encode("No <s> ▁He")
        self.assertEqual(input_ids, [284, 1, 156])
        tokens = self.tokenizer.tokenize("No <s> ▁He")
        self.assertEqual(tokens, ["▁No", "<s>", "▁He"])  # spaces are eaten by rstrip / lstrip