configuration_swin.py 6.83 KB
Newer Older
novice's avatar
novice committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Swin Transformer model configuration"""

17
18
19
20
21
from collections import OrderedDict
from typing import Mapping

from packaging import version

novice's avatar
novice committed
22
from ...configuration_utils import PretrainedConfig
23
from ...onnx import OnnxConfig
novice's avatar
novice committed
24
25
26
27
28
29
from ...utils import logging


logger = logging.get_logger(__name__)

SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
32
    "microsoft/swin-tiny-patch4-window7-224": (
        "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"
    ),
novice's avatar
novice committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    # See all Swin models at https://huggingface.co/models?filter=swin
}


class SwinConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`SwinModel`]. It is used to instantiate a Swin
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Swin
    [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 4):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to [2, 2, 6, 2]):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to [3, 6, 12, 24]):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 7):
            Size of windows.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
novice's avatar
novice committed
64
            Ratio of MLP hidden dimensionality to embedding dimensionality.
novice's avatar
novice committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        qkv_bias (`bool`, *optional*, defaults to True):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to False):
            Whether or not to add absolute position embeddings to the patch embeddings.
        patch_norm (`bool`, *optional*, defaults to True):
            Whether or not to add layer normalization after patch embedding.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
NielsRogge's avatar
NielsRogge committed
84
85
        encoder_stride (`int`, `optional`, defaults to 32):
            Factor to increase the spatial resolution by in the decoder head for masked image modeling.
novice's avatar
novice committed
86
87
88
89

        Example:

    ```python
90
    >>> from transformers import SwinConfig, SwinModel
novice's avatar
novice committed
91
92
93
94

    >>> # Initializing a Swin microsoft/swin-tiny-patch4-window7-224 style configuration
    >>> configuration = SwinConfig()

95
    >>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
novice's avatar
novice committed
96
97
98
99
100
101
102
    >>> model = SwinModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "swin"

103
104
    attribute_map = {
        "num_attention_heads": "num_heads",
105
        "num_hidden_layers": "num_layers",
106
107
    }

novice's avatar
novice committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def __init__(
        self,
        image_size=224,
        patch_size=4,
        num_channels=3,
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
        mlp_ratio=4.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=False,
        patch_norm=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
NielsRogge's avatar
NielsRogge committed
127
        encoder_stride=32,
novice's avatar
novice committed
128
129
130
131
132
133
134
135
136
        **kwargs
    ):
        super().__init__(**kwargs)

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
NielsRogge's avatar
NielsRogge committed
137
        self.num_layers = len(depths)
novice's avatar
novice committed
138
139
140
141
142
143
144
145
146
147
148
149
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.path_norm = patch_norm
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
NielsRogge's avatar
NielsRogge committed
150
        self.encoder_stride = encoder_stride
151
152
        # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
        # this indicates the channel dimension after the last stage of the model
153
        self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170


class SwinOnnxConfig(OnnxConfig):

    torch_onnx_minimum_version = version.parse("1.11")

    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        return OrderedDict(
            [
                ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
            ]
        )

    @property
    def atol_for_validation(self) -> float:
        return 1e-4