tokenization_xlnet.py 6.94 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for XLNet model."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
from shutil import copyfile

import unicodedata
import six

26
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
thomwolf's avatar
thomwolf committed
27
28
29

logger = logging.getLogger(__name__)

30
31
32
33
34
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
thomwolf's avatar
thomwolf committed
35
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
36
    }
thomwolf's avatar
thomwolf committed
37
}
38
39
40
41
42

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    'xlnet-large-cased': 512,
}

43
44
45
SPIECE_UNDERLINE = u'▁'

# Segments (not really needed)
46
47
48
49
50
SEG_ID_A   = 0
SEG_ID_B   = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4
thomwolf's avatar
thomwolf committed
51

52
class XLNetTokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
53
54
55
56
    """
        SentencePiece based tokenizer. Peculiarities:
            - requires SentencePiece: https://github.com/google/sentencepiece
    """
57
58
59
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
60

61
    def __init__(self, vocab_file, max_len=None,
62
63
64
65
66
67
68
69
70
                 do_lower_case=False, remove_space=True, keep_accents=False,
                 bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>",
                 pad_token="<pad>", cls_token="<cls>", mask_token="<mask>",
                 additional_special_tokens=["<eop>", "<eod>"], **kwargs):
        super(XLNetTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token,
                                             unk_token=unk_token, sep_token=sep_token,
                                             pad_token=pad_token, cls_token=cls_token,
                                             mask_token=mask_token, additional_special_tokens=
                                             additional_special_tokens, **kwargs)
thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")

        self.do_lower_case = do_lower_case
        self.remove_space = remove_space
        self.keep_accents = keep_accents
        self.vocab_file = vocab_file

        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(vocab_file)

85
    @property
86
    def vocab_size(self):
87
        return len(self.sp_model)
thomwolf's avatar
thomwolf committed
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(self.vocab_file)

thomwolf's avatar
thomwolf committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    def preprocess_text(self, inputs):
        if self.remove_space:
            outputs = ' '.join(inputs.strip().split())
        else:
            outputs = inputs
        outputs = outputs.replace("``", '"').replace("''", '"')

        if six.PY2 and isinstance(outputs, str):
            outputs = outputs.decode('utf-8')

        if not self.keep_accents:
            outputs = unicodedata.normalize('NFKD', outputs)
            outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
        if self.do_lower_case:
            outputs = outputs.lower()

        return outputs

122
    def _tokenize(self, text, return_unicode=True, sample=False):
thomwolf's avatar
thomwolf committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        """ Tokenize a string.
            return_unicode is used only for py2
        """
        text = self.preprocess_text(text)
        # note(zhiliny): in some systems, sentencepiece only accepts str for py2
        if six.PY2 and isinstance(text, unicode):
            text = text.encode('utf-8')

        if not sample:
            pieces = self.sp_model.EncodeAsPieces(text)
        else:
            pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(
                    piece[:-1].replace(SPIECE_UNDERLINE, ''))
                if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        # note(zhiliny): convert back to unicode for py2
        if six.PY2 and return_unicode:
            ret_pieces = []
            for piece in new_pieces:
                if isinstance(piece, str):
                    piece = piece.decode('utf-8')
                ret_pieces.append(piece)
            new_pieces = ret_pieces

        return new_pieces

161
162
163
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.sp_model.PieceToId(token)
thomwolf's avatar
thomwolf committed
164

165
166
167
168
169
170
    def _convert_id_to_token(self, index, return_unicode=True):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        token = self.sp_model.IdToPiece(index)
        if six.PY2 and return_unicode and isinstance(token, str):
            token = token.decode('utf-8')
        return token
thomwolf's avatar
thomwolf committed
171

172
    def _convert_ids_to_string(self, tokens_ids):
thomwolf's avatar
thomwolf committed
173
        """Converts a sequence of ids in a string."""
174
        out_string = ''.join(tokens_ids)
thomwolf's avatar
thomwolf committed
175
176
        return out_string

177
    def save_vocabulary(self, save_directory):
thomwolf's avatar
thomwolf committed
178
179
180
        """ Save the sentencepiece vocabulary (copy original file) and special tokens file
            to a directory.
        """
181
182
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
thomwolf committed
183
            return
184
        out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
thomwolf's avatar
thomwolf committed
185
186
187

        copyfile(self.vocab_file, out_vocab_file)

188
        return (out_vocab_file,)