pregenerate_training_data.py 15.3 KB
Newer Older
1
2
3
from argparse import ArgumentParser
from pathlib import Path
from tqdm import tqdm, trange
4
5
from tempfile import TemporaryDirectory
import shelve
6

7
from random import random, randrange, randint, shuffle, choice
thomwolf's avatar
thomwolf committed
8
from pytorch_transformers.tokenization_bert import BertTokenizer
9
import numpy as np
10
import json
11
import collections
12
13

class DocumentDatabase:
14
    def __init__(self, reduce_memory=False):
15
        if reduce_memory:
16
17
            self.temp_dir = TemporaryDirectory()
            self.working_dir = Path(self.temp_dir.name)
18
19
20
21
22
23
24
25
            self.document_shelf_filepath = self.working_dir / 'shelf.db'
            self.document_shelf = shelve.open(str(self.document_shelf_filepath),
                                              flag='n', protocol=-1)
            self.documents = None
        else:
            self.documents = []
            self.document_shelf = None
            self.document_shelf_filepath = None
26
            self.temp_dir = None
27
28
29
30
31
32
        self.doc_lengths = []
        self.doc_cumsum = None
        self.cumsum_max = None
        self.reduce_memory = reduce_memory

    def add_document(self, document):
33
34
        if not document:
            return
35
36
37
38
39
40
41
42
43
44
        if self.reduce_memory:
            current_idx = len(self.doc_lengths)
            self.document_shelf[str(current_idx)] = document
        else:
            self.documents.append(document)
        self.doc_lengths.append(len(document))

    def _precalculate_doc_weights(self):
        self.doc_cumsum = np.cumsum(self.doc_lengths)
        self.cumsum_max = self.doc_cumsum[-1]
45
46
47
48

    def sample_doc(self, current_idx, sentence_weighted=True):
        # Uses the current iteration counter to ensure we don't sample the same doc twice
        if sentence_weighted:
49
50
51
52
53
            # With sentence weighting, we sample docs proportionally to their sentence length
            if self.doc_cumsum is None or len(self.doc_cumsum) != len(self.doc_lengths):
                self._precalculate_doc_weights()
            rand_start = self.doc_cumsum[current_idx]
            rand_end = rand_start + self.cumsum_max - self.doc_lengths[current_idx]
54
            sentence_index = randrange(rand_start, rand_end) % self.cumsum_max
55
            sampled_doc_index = np.searchsorted(self.doc_cumsum, sentence_index, side='right')
56
57
        else:
            # If we don't use sentence weighting, then every doc has an equal chance to be chosen
58
            sampled_doc_index = (current_idx + randrange(1, len(self.doc_lengths))) % len(self.doc_lengths)
59
        assert sampled_doc_index != current_idx
60
61
62
63
        if self.reduce_memory:
            return self.document_shelf[str(sampled_doc_index)]
        else:
            return self.documents[sampled_doc_index]
64
65

    def __len__(self):
66
        return len(self.doc_lengths)
67
68

    def __getitem__(self, item):
69
70
71
72
73
        if self.reduce_memory:
            return self.document_shelf[str(item)]
        else:
            return self.documents[item]

74
75
76
77
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, traceback):
78
79
        if self.document_shelf is not None:
            self.document_shelf.close()
80
81
        if self.temp_dir is not None:
            self.temp_dir.cleanup()
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
    """Truncates a pair of sequences to a maximum sequence length. Lifted from Google's BERT repo."""
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_num_tokens:
            break

        trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
        assert len(trunc_tokens) >= 1

        # We want to sometimes truncate from the front and sometimes from the
        # back to add more randomness and avoid biases.
        if random() < 0.5:
            del trunc_tokens[0]
        else:
            trunc_tokens.pop()

101
102
MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])
103

104
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list):
105
106
107
108
109
110
    """Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
    with several refactors to clean it up and remove a lot of unnecessary variables."""
    cand_indices = []
    for (i, token) in enumerate(tokens):
        if token == "[CLS]" or token == "[SEP]":
            continue
111
112
113
114
115
116
117
118
119
120
121
122
123
        # Whole Word Masking means that if we mask all of the wordpieces
        # corresponding to an original word. When a word has been split into
        # WordPieces, the first token does not have any marker and any subsequence
        # tokens are prefixed with ##. So whenever we see the ## token, we
        # append it to the previous set of word indexes.
        #
        # Note that Whole Word Masking does *not* change the training code
        # at all -- we still predict each WordPiece independently, softmaxed
        # over the entire vocabulary.
        if (whole_word_mask and len(cand_indices) >= 1 and token.startswith("##")):
            cand_indices[-1].append(i)
        else:
            cand_indices.append([i])
124
125
126
127

    num_to_mask = min(max_predictions_per_seq,
                      max(1, int(round(len(tokens) * masked_lm_prob))))
    shuffle(cand_indices)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    masked_lms = []
    covered_indexes = set()
    for index_set in cand_indices:
        if len(masked_lms) >= num_to_mask:
            break
        # If adding a whole-word mask would exceed the maximum number of
        # predictions, then just skip this candidate.
        if len(masked_lms) + len(index_set) > num_to_mask:
            continue
        is_any_index_covered = False
        for index in index_set:
            if index in covered_indexes:
                is_any_index_covered = True
                break
        if is_any_index_covered:
            continue
        for index in index_set:
            covered_indexes.add(index)

            masked_token = None
            # 80% of the time, replace with [MASK]
            if random() < 0.8:
                masked_token = "[MASK]"
151
            else:
152
153
154
155
156
157
158
159
160
161
162
163
164
                # 10% of the time, keep original
                if random() < 0.5:
                    masked_token = tokens[index]
                # 10% of the time, replace with random word
                else:
                    masked_token = choice(vocab_list)
            masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
            tokens[index] = masked_token

    assert len(masked_lms) <= num_to_mask
    masked_lms = sorted(masked_lms, key=lambda x: x.index)
    mask_indices = [p.index for p in masked_lms]
    masked_token_labels = [p.label for p in masked_lms]
165
166
167
168
169
170

    return tokens, mask_indices, masked_token_labels


def create_instances_from_document(
        doc_database, doc_idx, max_seq_length, short_seq_prob,
171
        masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list):
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    """This code is mostly a duplicate of the equivalent function from Google BERT's repo.
    However, we make some changes and improvements. Sampling is improved and no longer requires a loop in this function.
    Also, documents are sampled proportionally to the number of sentences they contain, which means each sentence
    (rather than each document) has an equal chance of being sampled as a false example for the NextSentence task."""
    document = doc_database[doc_idx]
    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # We *usually* want to fill up the entire sequence since we are padding
    # to `max_seq_length` anyways, so short sequences are generally wasted
    # computation. However, we *sometimes*
    # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
    # sequences to minimize the mismatch between pre-training and fine-tuning.
    # The `target_seq_length` is just a rough target however, whereas
    # `max_seq_length` is a hard limit.
    target_seq_length = max_num_tokens
    if random() < short_seq_prob:
        target_seq_length = randint(2, max_num_tokens)

    # We DON'T just concatenate all of the tokens from a document into a long
    # sequence and choose an arbitrary split point because this would make the
    # next sentence prediction task too easy. Instead, we split the input into
    # segments "A" and "B" based on the actual "sentences" provided by the user
    # input.
    instances = []
    current_chunk = []
    current_length = 0
    i = 0
    while i < len(document):
        segment = document[i]
        current_chunk.append(segment)
        current_length += len(segment)
        if i == len(document) - 1 or current_length >= target_seq_length:
            if current_chunk:
                # `a_end` is how many segments from `current_chunk` go into the `A`
                # (first) sentence.
                a_end = 1
                if len(current_chunk) >= 2:
210
                    a_end = randrange(1, len(current_chunk))
211
212
213
214
215
216
217
218
219
220
221
222

                tokens_a = []
                for j in range(a_end):
                    tokens_a.extend(current_chunk[j])

                tokens_b = []

                # Random next
                if len(current_chunk) == 1 or random() < 0.5:
                    is_random_next = True
                    target_b_length = target_seq_length - len(tokens_a)

223
                    # Sample a random document, with longer docs being sampled more frequently
224
225
                    random_document = doc_database.sample_doc(current_idx=doc_idx, sentence_weighted=True)

226
                    random_start = randrange(0, len(random_document))
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
                    for j in range(random_start, len(random_document)):
                        tokens_b.extend(random_document[j])
                        if len(tokens_b) >= target_b_length:
                            break
                    # We didn't actually use these segments so we "put them back" so
                    # they don't go to waste.
                    num_unused_segments = len(current_chunk) - a_end
                    i -= num_unused_segments
                # Actual next
                else:
                    is_random_next = False
                    for j in range(a_end, len(current_chunk)):
                        tokens_b.extend(current_chunk[j])
                truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)

                assert len(tokens_a) >= 1
                assert len(tokens_b) >= 1

                tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + tokens_b + ["[SEP]"]
                # The segment IDs are 0 for the [CLS] token, the A tokens and the first [SEP]
                # They are 1 for the B tokens and the final [SEP]
                segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)]

                tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
251
                    tokens, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab_list)
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

                instance = {
                    "tokens": tokens,
                    "segment_ids": segment_ids,
                    "is_random_next": is_random_next,
                    "masked_lm_positions": masked_lm_positions,
                    "masked_lm_labels": masked_lm_labels}
                instances.append(instance)
            current_chunk = []
            current_length = 0
        i += 1

    return instances


def main():
    parser = ArgumentParser()
269
270
    parser.add_argument('--train_corpus', type=Path, required=True)
    parser.add_argument("--output_dir", type=Path, required=True)
271
272
    parser.add_argument("--bert_model", type=str, required=True,
                        choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased",
273
                                 "bert-base-multilingual-uncased", "bert-base-chinese", "bert-base-multilingual-cased"])
274
    parser.add_argument("--do_lower_case", action="store_true")
275
276
    parser.add_argument("--do_whole_word_mask", action="store_true",
                        help="Whether to use whole word masking rather than per-WordPiece masking.")
277
278
279
    parser.add_argument("--reduce_memory", action="store_true",
                        help="Reduce memory usage for large datasets by keeping data on disc rather than in memory")

280
281
282
283
284
285
286
287
288
289
290
291
292
293
    parser.add_argument("--epochs_to_generate", type=int, default=3,
                        help="Number of epochs of data to pregenerate")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument("--short_seq_prob", type=float, default=0.1,
                        help="Probability of making a short sentence as a training example")
    parser.add_argument("--masked_lm_prob", type=float, default=0.15,
                        help="Probability of masking each token for the LM task")
    parser.add_argument("--max_predictions_per_seq", type=int, default=20,
                        help="Maximum number of tokens to mask in each sequence")

    args = parser.parse_args()

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    vocab_list = list(tokenizer.vocab.keys())
294
295
296
297
298
299
300
301
302
303
304
    with DocumentDatabase(reduce_memory=args.reduce_memory) as docs:
        with args.train_corpus.open() as f:
            doc = []
            for line in tqdm(f, desc="Loading Dataset", unit=" lines"):
                line = line.strip()
                if line == "":
                    docs.add_document(doc)
                    doc = []
                else:
                    tokens = tokenizer.tokenize(line)
                    doc.append(tokens)
305
306
307
308
309
310
311
312
            if doc:
                docs.add_document(doc)  # If the last doc didn't end on a newline, make sure it still gets added
        if len(docs) <= 1:
            exit("ERROR: No document breaks were found in the input file! These are necessary to allow the script to "
                 "ensure that random NextSentences are not sampled from the same document. Please add blank lines to "
                 "indicate breaks between documents in your input file. If your dataset does not contain multiple "
                 "documents, blank lines can be inserted at any natural boundary, such as the ends of chapters, "
                 "sections or paragraphs.")
313
314
315
316
317
318
319
320
321
322

        args.output_dir.mkdir(exist_ok=True)
        for epoch in trange(args.epochs_to_generate, desc="Epoch"):
            epoch_filename = args.output_dir / f"epoch_{epoch}.json"
            num_instances = 0
            with epoch_filename.open('w') as epoch_file:
                for doc_idx in trange(len(docs), desc="Document"):
                    doc_instances = create_instances_from_document(
                        docs, doc_idx, max_seq_length=args.max_seq_len, short_seq_prob=args.short_seq_prob,
                        masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq,
323
                        whole_word_mask=args.do_whole_word_mask, vocab_list=vocab_list)
324
325
326
327
328
329
330
331
332
333
334
                    doc_instances = [json.dumps(instance) for instance in doc_instances]
                    for instance in doc_instances:
                        epoch_file.write(instance + '\n')
                        num_instances += 1
            metrics_file = args.output_dir / f"epoch_{epoch}_metrics.json"
            with metrics_file.open('w') as metrics_file:
                metrics = {
                    "num_training_examples": num_instances,
                    "max_seq_len": args.max_seq_len
                }
                metrics_file.write(json.dumps(metrics))
335
336
337
338


if __name__ == '__main__':
    main()