test_modeling_layoutlm.py 14.4 KB
Newer Older
Minghao Li's avatar
Minghao Li committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team.
Minghao Li's avatar
Minghao Li committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
NielsRogge's avatar
NielsRogge committed
20
from transformers.testing_utils import require_torch, slow, torch_device
Minghao Li's avatar
Minghao Li committed
21
22
23
24
25
26

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
NielsRogge's avatar
NielsRogge committed
27
28
29
30
31
32
33
34
35
    import torch

    from transformers import (
        LayoutLMConfig,
        LayoutLMForMaskedLM,
        LayoutLMForSequenceClassification,
        LayoutLMForTokenClassification,
        LayoutLMModel,
    )
Minghao Li's avatar
Minghao Li committed
36
37
38


class LayoutLMModelTester:
NielsRogge's avatar
NielsRogge committed
39
    """You can also import this e.g from .test_modeling_layoutlm import LayoutLMModelTester """
Minghao Li's avatar
Minghao Li committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
        range_bbox=1000,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.range_bbox = range_bbox

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox)
        # Ensure that bbox is legal
        for i in range(bbox.shape[0]):
            for j in range(bbox.shape[1]):
                if bbox[i, j, 3] < bbox[i, j, 1]:
                    t = bbox[i, j, 3]
                    bbox[i, j, 3] = bbox[i, j, 1]
                    bbox[i, j, 1] = t
                if bbox[i, j, 2] < bbox[i, j, 0]:
                    t = bbox[i, j, 2]
                    bbox[i, j, 2] = bbox[i, j, 0]
                    bbox[i, j, 0] = t

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LayoutLMConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_model(
        self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LayoutLMModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, bbox, token_type_ids=token_type_ids)
        result = model(input_ids, bbox)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_masked_lm(
        self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LayoutLMForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

NielsRogge's avatar
NielsRogge committed
160
161
162
163
164
165
166
167
168
169
170
171
    def create_and_check_for_sequence_classification(
        self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LayoutLMForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

Minghao Li's avatar
Minghao Li committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def create_and_check_for_token_classification(
        self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LayoutLMForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            bbox,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "bbox": bbox,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


@require_torch
class LayoutLMModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
NielsRogge's avatar
NielsRogge committed
207
208
209
210
211
212
213
214
        (
            LayoutLMModel,
            LayoutLMForMaskedLM,
            LayoutLMForSequenceClassification,
            LayoutLMForTokenClassification,
        )
        if is_torch_available()
        else None
Minghao Li's avatar
Minghao Li committed
215
216
217
218
219
220
221
222
223
224
225
226
227
    )

    def setUp(self):
        self.model_tester = LayoutLMModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

228
229
230
231
232
233
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

Minghao Li's avatar
Minghao Li committed
234
235
236
237
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
238
239
240
241
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

Minghao Li's avatar
Minghao Li committed
242
243
244
245
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

def prepare_layoutlm_batch_inputs():
    # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
    # fmt: off
    input_ids = torch.tensor([[-9997.22461,-9997.22461,-9997.22461,-9997.22461,-9997.22461,-9997.22461,-9997.22461,-9997.22461,-9997.22461,-16.2628059,-10004.082,15.4330549,15.4330549,15.4330549,-9990.42,-16.3270779,-16.3270779,-16.3270779,-16.3270779,-16.3270779,-10004.8506]],device=torch_device)  # noqa: E231
    attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],],device=torch_device)  # noqa: E231
    bbox = torch.tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]],device=torch_device)  # noqa: E231
    token_type_ids = torch.tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],device=torch_device)  # noqa: E231
    # these are sequence labels (i.e. at the token level)
    labels = torch.tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]],device=torch_device)  # noqa: E231
    # fmt: on

    return input_ids, attention_mask, bbox, token_type_ids, labels


@require_torch
class LayoutLMModelIntegrationTest(unittest.TestCase):
    @slow
    def test_forward_pass_no_head(self):
        model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device)

        input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()

        # forward pass
        outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids)

        # test the sequence output on [0, :3, :3]
        expected_slice = torch.tensor(
            [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3))

        # test the pooled output on [1, :3]
        expected_slice = torch.tensor([-0.6580, -0.0214, 0.8552], device=torch_device)

        self.assertTrue(torch.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3))

    @slow
    def test_forward_pass_sequence_classification(self):
        # initialize model with randomly initialized sequence classification head
        model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2).to(
Minghao Li's avatar
Minghao Li committed
289
            torch_device
NielsRogge's avatar
NielsRogge committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        )

        input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs()

        # forward pass
        outputs = model(
            input_ids=input_ids,
            bbox=bbox,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            labels=torch.tensor([1, 1], device=torch_device),
        )

        # test whether we get a loss as a scalar
        loss = outputs.loss
        expected_shape = torch.Size([])
        self.assertEqual(loss.shape, expected_shape)

        # test the shape of the logits
        logits = outputs.logits
        expected_shape = torch.Size((2, 2))
        self.assertEqual(logits.shape, expected_shape)
Minghao Li's avatar
Minghao Li committed
312
313

    @slow
NielsRogge's avatar
NielsRogge committed
314
315
316
317
318
    def test_forward_pass_token_classification(self):
        # initialize model with randomly initialized token classification head
        model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13).to(
            torch_device
        )
Minghao Li's avatar
Minghao Li committed
319

NielsRogge's avatar
NielsRogge committed
320
321
322
323
324
325
        input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs()

        # forward pass
        outputs = model(
            input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels
        )
Minghao Li's avatar
Minghao Li committed
326

NielsRogge's avatar
NielsRogge committed
327
328
        # test the loss calculation to be around 2.65
        expected_loss = torch.tensor(2.65, device=torch_device)
Minghao Li's avatar
Minghao Li committed
329

NielsRogge's avatar
NielsRogge committed
330
        self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=0.1))
Minghao Li's avatar
Minghao Li committed
331

NielsRogge's avatar
NielsRogge committed
332
333
334
335
        # test the shape of the logits
        logits = outputs.logits
        expected_shape = torch.Size((2, 25, 13))
        self.assertEqual(logits.shape, expected_shape)