base.py 41.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import collections
16
import csv
17
import importlib
18
19
20
21
import json
import os
import pickle
import sys
22
import types
23
import warnings
24
from abc import ABC, abstractmethod
25
from collections import UserDict
26
27
from contextlib import contextmanager
from os.path import abspath, exists
28
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
29

30
31
from packaging import version

32
from ..feature_extraction_utils import PreTrainedFeatureExtractor
33
from ..file_utils import ModelOutput, add_end_docstrings, is_tf_available, is_torch_available
34
from ..modelcard import ModelCard
35
from ..models.auto.configuration_auto import AutoConfig
36
from ..tokenization_utils import PreTrainedTokenizer
37
38
39
from ..utils import logging


40
41
GenericTensor = Union[List["GenericTensor"], "torch.Tensor", "tf.Tensor"]

42
43
44
45
46
47
48
if is_tf_available():
    import tensorflow as tf

    from ..models.auto.modeling_tf_auto import TFAutoModel

if is_torch_available():
    import torch
49
    from torch.utils.data import DataLoader, Dataset
50
51

    from ..models.auto.modeling_auto import AutoModel
52
53
54
else:
    Dataset = None
    KeyDataset = None
55
56
57
58
59
60
61
62
63

if TYPE_CHECKING:
    from ..modeling_tf_utils import TFPreTrainedModel
    from ..modeling_utils import PreTrainedModel


logger = logging.get_logger(__name__)


64
def no_collate_fn(items):
65
66
67
68
69
    if len(items) != 1:
        raise ValueError("This collate_fn is meant to be used with batch_size=1")
    return items[0]


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def _pad(items, key, padding_value, padding_side):
    batch_size = len(items)
    if isinstance(items[0][key], torch.Tensor):
        # Others include `attention_mask` etc...
        shape = items[0][key].shape
        dim = len(shape)
        if dim == 4:
            # This is probable image so padding shouldn't be necessary
            # B, C, H, W
            return torch.cat([item[key] for item in items], dim=0)
        max_length = max(item[key].shape[1] for item in items)
        dtype = items[0][key].dtype

        if dim == 2:
            tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
        elif dim == 3:
            tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value

        for i, item in enumerate(items):
            if dim == 2:
                if padding_side == "left":
                    tensor[i, -len(item[key][0]) :] = item[key][0].clone()
                else:
                    tensor[i, : len(item[key][0])] = item[key][0].clone()
            elif dim == 3:
                if padding_side == "left":
                    tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
                else:
                    tensor[i, : len(item[key][0]), :] = item[key][0].clone()
        return tensor
    else:
        return [item[key] for item in items]


def pad_collate_fn(tokenizer, feature_extractor):
    padding_side = "right"
    if tokenizer is None and feature_extractor is None:
        raise ValueError("Pipeline without tokenizer or feature_extractor cannot do batching")
    if tokenizer is not None:
        if tokenizer.pad_token_id is None:
            raise ValueError(
                "Pipeline with tokenizer without pad_token cannot do batching. You can try to set it with "
                "`pipe.tokenizer.pad_token_id = model.config.eos_token_id`."
            )
        else:
            padding_value = tokenizer.pad_token_id
            padding_side = tokenizer.padding_side
    if feature_extractor is not None:
        # Feature extractor can be images, where no padding is expected
        padding_value = getattr(feature_extractor, "padding_value", None)
        padding_side = getattr(feature_extractor, "padding_side", None)

    def inner(items):
        keys = set(items[0].keys())
        for item in items:
            if set(item.keys()) != keys:
                raise ValueError(
                    f"The elements of the batch contain different keys. Cannot batch them ({set(item.keys())} != {keys})"
                )
        # input_values, input_pixels, input_ids, ...
130
131
132
133
134
135
136
137
138
        padded = {}
        for key in keys:
            if key.startswith("input_"):
                _padding_value = padding_value
            elif key == "p_mask":
                _padding_value = 1
            else:
                _padding_value = 0
            padded[key] = _pad(items, key, _padding_value, padding_side)
139
140
141
142
143
        return padded

    return inner


144
145
146
147
148
149
150
def infer_framework_load_model(
    model,
    config: AutoConfig,
    model_classes: Optional[Dict[str, Tuple[type]]] = None,
    task: Optional[str] = None,
    framework: Optional[str] = None,
    **model_kwargs
151
):
152
    """
153
    Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model).
154

Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
    If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is
    actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to
    instantiate the model twice, this model is returned for use by the pipeline.
158

159
    If both frameworks are installed and available for `model`, PyTorch is selected.
160
161

    Args:
162
        model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
163
            The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from.
164
        config ([`AutoConfig`]):
165
            The config associated with the model to help using the correct class
166
        model_classes (dictionary `str` to `type`, *optional*):
167
            A mapping framework to class.
168
        task (`str`):
169
170
            The task defining which pipeline will be returned.
        model_kwargs:
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
            Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
            **model_kwargs)` function.
173
174

    Returns:
175
        `Tuple`: A tuple framework, model.
176
177
178
179
180
181
182
183
    """
    if not is_tf_available() and not is_torch_available():
        raise RuntimeError(
            "At least one of TensorFlow 2.0 or PyTorch should be installed. "
            "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
            "To install PyTorch, read the instructions at https://pytorch.org/."
        )
    if isinstance(model, str):
184
        model_kwargs["_from_pipeline"] = task
185
186
187
188
189
190
191
192
193
194
195
196
        class_tuple = ()
        look_pt = is_torch_available() and framework in {"pt", None}
        look_tf = is_tf_available() and framework in {"tf", None}
        if model_classes:
            if look_pt:
                class_tuple = class_tuple + model_classes.get("pt", (AutoModel,))
            if look_tf:
                class_tuple = class_tuple + model_classes.get("tf", (TFAutoModel,))
        if config.architectures:
            classes = []
            for architecture in config.architectures:
                transformers_module = importlib.import_module("transformers")
197
                if look_pt:
198
199
200
                    _class = getattr(transformers_module, architecture, None)
                    if _class is not None:
                        classes.append(_class)
201
                if look_tf:
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
                    _class = getattr(transformers_module, f"TF{architecture}", None)
                    if _class is not None:
                        classes.append(_class)
            class_tuple = class_tuple + tuple(classes)

        if len(class_tuple) == 0:
            raise ValueError(f"Pipeline cannot infer suitable model classes from {model}")

        for model_class in class_tuple:
            kwargs = model_kwargs.copy()
            if framework == "pt" and model.endswith(".h5"):
                kwargs["from_tf"] = True
                logger.warning(
                    "Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. "
                    "Trying to load the model with PyTorch."
                )
            elif framework == "tf" and model.endswith(".bin"):
                kwargs["from_pt"] = True
                logger.warning(
                    "Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. "
                    "Trying to load the model with Tensorflow."
                )

225
            try:
226
                model = model_class.from_pretrained(model, **kwargs)
227
228
                if hasattr(model, "eval"):
                    model = model.eval()
229
230
231
232
233
234
235
                # Stop loading on the first successful load.
                break
            except (OSError, ValueError):
                continue

        if isinstance(model, str):
            raise ValueError(f"Could not load model {model} with any of the following classes: {class_tuple}.")
236
237
238
239
240

    framework = "tf" if model.__class__.__name__.startswith("TF") else "pt"
    return framework, model


241
242
243
244
245
246
247
248
def infer_framework_from_model(
    model,
    model_classes: Optional[Dict[str, Tuple[type]]] = None,
    task: Optional[str] = None,
    framework: Optional[str] = None,
    **model_kwargs
):
    """
249
    Select framework (TensorFlow or PyTorch) to use from the `model` passed. Returns a tuple (framework, model).
250

Sylvain Gugger's avatar
Sylvain Gugger committed
251
252
253
    If `model` is instantiated, this function will just infer the framework from the model class. Otherwise `model` is
    actually a checkpoint name and this method will try to instantiate it using `model_classes`. Since we don't want to
    instantiate the model twice, this model is returned for use by the pipeline.
254

255
    If both frameworks are installed and available for `model`, PyTorch is selected.
256
257

    Args:
258
        model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
259
            The model to infer the framework from. If `str`, a checkpoint name. The model to infer the framewrok from.
260
        model_classes (dictionary `str` to `type`, *optional*):
261
            A mapping framework to class.
262
        task (`str`):
263
264
            The task defining which pipeline will be returned.
        model_kwargs:
Sylvain Gugger's avatar
Sylvain Gugger committed
265
266
            Additional dictionary of keyword arguments passed along to the model's `from_pretrained(...,
            **model_kwargs)` function.
267
268

    Returns:
269
        `Tuple`: A tuple framework, model.
270
271
272
273
274
275
276
277
278
279
    """
    if isinstance(model, str):
        config = AutoConfig.from_pretrained(model, _from_pipeline=task, **model_kwargs)
    else:
        config = model.config
    return infer_framework_load_model(
        model, config, model_classes=model_classes, _from_pipeline=task, task=task, framework=framework, **model_kwargs
    )


280
281
282
283
284
def get_framework(model, revision: Optional[str] = None):
    """
    Select framework (TensorFlow or PyTorch) to use.

    Args:
285
        model (`str`, [`PreTrainedModel`] or [`TFPreTrainedModel`]):
286
287
288
            If both frameworks are installed, picks the one corresponding to the model passed (either a model class or
            the model name). If no specific model is provided, defaults to using PyTorch.
    """
289
290
291
292
    warnings.warn(
        "`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.",
        FutureWarning,
    )
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    if not is_tf_available() and not is_torch_available():
        raise RuntimeError(
            "At least one of TensorFlow 2.0 or PyTorch should be installed. "
            "To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
            "To install PyTorch, read the instructions at https://pytorch.org/."
        )
    if isinstance(model, str):
        if is_torch_available() and not is_tf_available():
            model = AutoModel.from_pretrained(model, revision=revision)
        elif is_tf_available() and not is_torch_available():
            model = TFAutoModel.from_pretrained(model, revision=revision)
        else:
            try:
                model = AutoModel.from_pretrained(model, revision=revision)
            except OSError:
                model = TFAutoModel.from_pretrained(model, revision=revision)

    framework = "tf" if model.__class__.__name__.startswith("TF") else "pt"
    return framework


def get_default_model(targeted_task: Dict, framework: Optional[str], task_options: Optional[Any]) -> str:
    """
    Select a default model to use for a given task. Defaults to pytorch if ambiguous.

    Args:
319
        targeted_task (`Dict` ):
320
321
           Dictionary representing the given task, that should contain default models

322
        framework (`str`, None)
323
324
           "pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet.

325
        task_options (`Any`, None)
326
327
328
329
330
           Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for
           translation task.

    Returns

331
        `str` The model string representing the default model for this pipeline
332
333
334
335
336
337
338
339
340
    """
    if is_torch_available() and not is_tf_available():
        framework = "pt"
    elif is_tf_available() and not is_torch_available():
        framework = "tf"

    defaults = targeted_task["default"]
    if task_options:
        if task_options not in defaults:
341
            raise ValueError(f"The task does not provide any default models for options {task_options}")
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        default_models = defaults[task_options]["model"]
    elif "model" in defaults:
        default_models = targeted_task["default"]["model"]
    else:
        # XXX This error message needs to be updated to be more generic if more tasks are going to become
        # parametrized
        raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"')

    if framework is None:
        framework = "pt"

    return default_models[framework]


class PipelineException(Exception):
    """
358
    Raised by a [`Pipeline`] when handling __call__.
359
360

    Args:
361
362
363
        task (`str`): The task of the pipeline.
        model (`str`): The model used by the pipeline.
        reason (`str`): The error message to display.
364
365
366
367
368
369
370
371
372
373
374
    """

    def __init__(self, task: str, model: str, reason: str):
        super().__init__(reason)

        self.task = task
        self.model = model


class ArgumentHandler(ABC):
    """
375
    Base interface for handling arguments for each [`~pipelines.Pipeline`].
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    """

    @abstractmethod
    def __call__(self, *args, **kwargs):
        raise NotImplementedError()


class PipelineDataFormat:
    """
    Base class for all the pipeline supported data format both for reading and writing. Supported data formats
    currently includes:

    - JSON
    - CSV
    - stdin/stdout (pipe)

Sylvain Gugger's avatar
Sylvain Gugger committed
392
393
    `PipelineDataFormat` also includes some utilities to work with multi-columns like mapping from datasets columns to
    pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format.
394
395

    Args:
396
397
398
399
400
        output_path (`str`, *optional*): Where to save the outgoing data.
        input_path (`str`, *optional*): Where to look for the input data.
        column (`str`, *optional*): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    """

    SUPPORTED_FORMATS = ["json", "csv", "pipe"]

    def __init__(
        self,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite: bool = False,
    ):
        self.output_path = output_path
        self.input_path = input_path
        self.column = column.split(",") if column is not None else [""]
        self.is_multi_columns = len(self.column) > 1

        if self.is_multi_columns:
            self.column = [tuple(c.split("=")) if "=" in c else (c, c) for c in self.column]

        if output_path is not None and not overwrite:
            if exists(abspath(self.output_path)):
422
                raise OSError(f"{self.output_path} already exists on disk")
423
424
425

        if input_path is not None:
            if not exists(abspath(self.input_path)):
426
                raise OSError(f"{self.input_path} doesnt exist on disk")
427
428
429
430
431
432
433
434

    @abstractmethod
    def __iter__(self):
        raise NotImplementedError()

    @abstractmethod
    def save(self, data: Union[dict, List[dict]]):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
435
        Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`].
436
437

        Args:
438
            data (`dict` or list of `dict`): The data to store.
439
440
441
442
443
444
445
446
        """
        raise NotImplementedError()

    def save_binary(self, data: Union[dict, List[dict]]) -> str:
        """
        Save the provided data object as a pickle-formatted binary data on the disk.

        Args:
447
            data (`dict` or list of `dict`): The data to store.
448
449

        Returns:
450
            `str`: Path where the data has been saved.
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        """
        path, _ = os.path.splitext(self.output_path)
        binary_path = os.path.extsep.join((path, "pickle"))

        with open(binary_path, "wb+") as f_output:
            pickle.dump(data, f_output)

        return binary_path

    @staticmethod
    def from_str(
        format: str,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite=False,
    ) -> "PipelineDataFormat":
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
469
        Creates an instance of the right subclass of [`~pipelines.PipelineDataFormat`] depending on `format`.
470
471

        Args:
472
473
474
            format: (`str`):
                The format of the desired pipeline. Acceptable values are `"json"`, `"csv"` or `"pipe"`.
            output_path (`str`, *optional*):
475
                Where to save the outgoing data.
476
            input_path (`str`, *optional*):
477
                Where to look for the input data.
478
            column (`str`, *optional*):
479
                The column to read.
480
481
            overwrite (`bool`, *optional*, defaults to `False`):
                Whether or not to overwrite the `output_path`.
482
483

        Returns:
484
            [`~pipelines.PipelineDataFormat`]: The proper data format.
485
486
487
488
489
490
491
492
        """
        if format == "json":
            return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
        elif format == "csv":
            return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
        elif format == "pipe":
            return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
        else:
493
            raise KeyError(f"Unknown reader {format} (Available reader are json/csv/pipe)")
494
495
496
497
498
499
500


class CsvPipelineDataFormat(PipelineDataFormat):
    """
    Support for pipelines using CSV data format.

    Args:
501
502
503
504
505
        output_path (`str`, *optional*): Where to save the outgoing data.
        input_path (`str`, *optional*): Where to look for the input data.
        column (`str`, *optional*): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    """

    def __init__(
        self,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite=False,
    ):
        super().__init__(output_path, input_path, column, overwrite=overwrite)

    def __iter__(self):
        with open(self.input_path, "r") as f:
            reader = csv.DictReader(f)
            for row in reader:
                if self.is_multi_columns:
                    yield {k: row[c] for k, c in self.column}
                else:
                    yield row[self.column[0]]

    def save(self, data: List[dict]):
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
528
        Save the provided data object with the representation for the current [`~pipelines.PipelineDataFormat`].
529
530

        Args:
531
            data (`List[dict]`): The data to store.
532
533
534
535
536
537
538
539
540
541
542
543
544
        """
        with open(self.output_path, "w") as f:
            if len(data) > 0:
                writer = csv.DictWriter(f, list(data[0].keys()))
                writer.writeheader()
                writer.writerows(data)


class JsonPipelineDataFormat(PipelineDataFormat):
    """
    Support for pipelines using JSON file format.

    Args:
545
546
547
548
549
        output_path (`str`, *optional*): Where to save the outgoing data.
        input_path (`str`, *optional*): Where to look for the input data.
        column (`str`, *optional*): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    """

    def __init__(
        self,
        output_path: Optional[str],
        input_path: Optional[str],
        column: Optional[str],
        overwrite=False,
    ):
        super().__init__(output_path, input_path, column, overwrite=overwrite)

        with open(input_path, "r") as f:
            self._entries = json.load(f)

    def __iter__(self):
        for entry in self._entries:
            if self.is_multi_columns:
                yield {k: entry[c] for k, c in self.column}
            else:
                yield entry[self.column[0]]

    def save(self, data: dict):
        """
        Save the provided data object in a json file.

        Args:
576
            data (`dict`): The data to store.
577
578
579
580
581
582
583
584
585
586
587
588
        """
        with open(self.output_path, "w") as f:
            json.dump(data, f)


class PipedPipelineDataFormat(PipelineDataFormat):
    """
    Read data from piped input to the python process. For multi columns data, columns should separated by \t

    If columns are provided, then the output will be a dictionary with {column_x: value_x}

    Args:
589
590
591
592
593
        output_path (`str`, *optional*): Where to save the outgoing data.
        input_path (`str`, *optional*): Where to look for the input data.
        column (`str`, *optional*): The column to read.
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the `output_path`.
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    """

    def __iter__(self):
        for line in sys.stdin:
            # Split for multi-columns
            if "\t" in line:

                line = line.split("\t")
                if self.column:
                    # Dictionary to map arguments
                    yield {kwargs: l for (kwargs, _), l in zip(self.column, line)}
                else:
                    yield tuple(line)

            # No dictionary to map arguments
            else:
                yield line

    def save(self, data: dict):
        """
        Print the data.

        Args:
617
            data (`dict`): The data to store.
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
        """
        print(data)

    def save_binary(self, data: Union[dict, List[dict]]) -> str:
        if self.output_path is None:
            raise KeyError(
                "When using piped input on pipeline outputting large object requires an output file path. "
                "Please provide such output path through --output argument."
            )

        return super().save_binary(data)


class _ScikitCompat(ABC):
    """
    Interface layer for the Scikit and Keras compatibility.
    """

    @abstractmethod
    def transform(self, X):
        raise NotImplementedError()

    @abstractmethod
    def predict(self, X):
        raise NotImplementedError()


PIPELINE_INIT_ARGS = r"""
    Arguments:
647
        model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
648
            The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
Sylvain Gugger's avatar
Sylvain Gugger committed
649
            [`PreTrainedModel`] for PyTorch and [`TFPreTrainedModel`] for TensorFlow.
650
        tokenizer ([`PreTrainedTokenizer`]):
651
            The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
652
653
            [`PreTrainedTokenizer`].
        modelcard (`str` or [`ModelCard`], *optional*):
654
            Model card attributed to the model for this pipeline.
655
        framework (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
656
657
            The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified framework must be
            installed.
658
659

            If no framework is specified, will default to the one currently installed. If no framework is specified and
Sylvain Gugger's avatar
Sylvain Gugger committed
660
661
            both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
            provided.
662
        task (`str`, defaults to `""`):
663
            A task-identifier for the pipeline.
664
665
        num_workers (`int`, *optional*, defaults to 8):
            When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the number of
666
            workers to be used.
667
668
        batch_size (`int`, *optional*, defaults to 1):
            When the pipeline will use *DataLoader* (when passing a dataset, on GPU for a Pytorch model), the size of
Sylvain Gugger's avatar
Sylvain Gugger committed
669
670
            the batch to use, for inference this is not always beneficial, please read [Batching with
            pipelines](https://huggingface.co/transformers/main_classes/pipelines.html#pipeline-batching) .
671
        args_parser ([`~pipelines.ArgumentHandler`], *optional*):
672
            Reference to the object in charge of parsing supplied pipeline parameters.
673
        device (`int`, *optional*, defaults to -1):
674
675
            Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on
            the associated CUDA device id.
676
        binary_output (`bool`, *optional*, defaults to `False`):
677
678
679
            Flag indicating if the output the pipeline should happen in a binary format (i.e., pickle) or as raw text.
"""

680
if is_torch_available():
681
682
683
684
685
686
    from transformers.pipelines.pt_utils import (
        PipelineChunkIterator,
        PipelineDataset,
        PipelineIterator,
        PipelinePackIterator,
    )
687

688
689
690
691
692
693
694
695
696
697
698
699
700
701

@add_end_docstrings(PIPELINE_INIT_ARGS)
class Pipeline(_ScikitCompat):
    """
    The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across
    different pipelines.

    Base class implementing pipelined operations. Pipeline workflow is defined as a sequence of the following
    operations:

        Input -> Tokenization -> Model Inference -> Post-Processing (task dependent) -> Output

    Pipeline supports running on CPU or GPU through the device argument (see below).

Sylvain Gugger's avatar
Sylvain Gugger committed
702
703
704
    Some pipeline, like for instance [`FeatureExtractionPipeline`] (`'feature-extraction'`) output large tensor object
    as nested-lists. In order to avoid dumping such large structure as textual data we provide the `binary_output`
    constructor argument. If set to `True`, the output will be stored in the pickle format.
705
706
707
708
709
710
711
    """

    default_input_names = None

    def __init__(
        self,
        model: Union["PreTrainedModel", "TFPreTrainedModel"],
712
713
        tokenizer: Optional[PreTrainedTokenizer] = None,
        feature_extractor: Optional[PreTrainedFeatureExtractor] = None,
714
715
716
717
718
719
        modelcard: Optional[ModelCard] = None,
        framework: Optional[str] = None,
        task: str = "",
        args_parser: ArgumentHandler = None,
        device: int = -1,
        binary_output: bool = False,
720
        **kwargs,
721
722
723
    ):

        if framework is None:
724
            framework, model = infer_framework_load_model(model, config=model.config)
725
726
727
728

        self.task = task
        self.model = model
        self.tokenizer = tokenizer
729
        self.feature_extractor = feature_extractor
730
731
        self.modelcard = modelcard
        self.framework = framework
732
        self.device = device if framework == "tf" else torch.device("cpu" if device < 0 else f"cuda:{device}")
733
734
735
736
737
738
739
740
741
742
743
        self.binary_output = binary_output

        # Special handling
        if self.framework == "pt" and self.device.type == "cuda":
            self.model = self.model.to(self.device)

        # Update config with task specific parameters
        task_specific_params = self.model.config.task_specific_params
        if task_specific_params is not None and task in task_specific_params:
            self.model.config.update(task_specific_params.get(task))

744
745
746
        self.call_count = 0
        self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)

747
748
749
750
751
    def save_pretrained(self, save_directory: str):
        """
        Save the pipeline's model and tokenizer.

        Args:
752
            save_directory (`str`):
753
754
755
                A path to the directory where to saved. It will be created if it doesn't exist.
        """
        if os.path.isfile(save_directory):
756
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
757
758
759
760
            return
        os.makedirs(save_directory, exist_ok=True)

        self.model.save_pretrained(save_directory)
761
762
763
764
765
766
767

        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(save_directory)

        if self.feature_extractor is not None:
            self.feature_extractor.save_pretrained(save_directory)

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        if self.modelcard is not None:
            self.modelcard.save_pretrained(save_directory)

    def transform(self, X):
        """
        Scikit / Keras interface to transformers' pipelines. This method will forward to __call__().
        """
        return self(X=X)

    def predict(self, X):
        """
        Scikit / Keras interface to transformers' pipelines. This method will forward to __call__().
        """
        return self(X=X)

    @contextmanager
    def device_placement(self):
        """
        Context Manager allowing tensor allocation on the user-specified device in framework agnostic way.

        Returns:
            Context manager

791
        Examples:
792

793
794
795
796
797
798
799
        ```python
        # Explicitly ask for tensor allocation on CUDA device :0
        pipe = pipeline(..., device=0)
        with pipe.device_placement():
            # Every framework specific tensor allocation will be done on the request device
            output = pipe(...)
        ```"""
800
        if self.framework == "tf":
801
            with tf.device("/CPU:0" if self.device == -1 else f"/device:GPU:{self.device}"):
802
803
804
805
806
807
808
809
810
811
812
813
                yield
        else:
            if self.device.type == "cuda":
                torch.cuda.set_device(self.device)

            yield

    def ensure_tensor_on_device(self, **inputs):
        """
        Ensure PyTorch tensors are on the specified device.

        Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
814
815
            inputs (keyword arguments that should be `torch.Tensor`, the rest is ignored):
                The tensors to place on `self.device`.
816
            Recursive on lists **only**.
817
818

        Return:
819
            `Dict[str, torch.Tensor]`: The same as `inputs` but on the proper device.
820
        """
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
        return self._ensure_tensor_on_device(inputs, self.device)

    def _ensure_tensor_on_device(self, inputs, device):
        if isinstance(inputs, ModelOutput):
            return ModelOutput(
                {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}
            )
        elif isinstance(inputs, dict):
            return {name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()}
        elif isinstance(inputs, UserDict):
            return UserDict({name: self._ensure_tensor_on_device(tensor, device) for name, tensor in inputs.items()})
        elif isinstance(inputs, list):
            return [self._ensure_tensor_on_device(item, device) for item in inputs]
        elif isinstance(inputs, tuple):
            return tuple([self._ensure_tensor_on_device(item, device) for item in inputs])
        elif isinstance(inputs, torch.Tensor):
837
            return inputs.to(device)
838
839
        else:
            return inputs
840
841
842
843
844
845

    def check_model_type(self, supported_models: Union[List[str], dict]):
        """
        Check if the model class is in supported by the pipeline.

        Args:
846
            supported_models (`List[str]` or `dict`):
847
848
849
                The list of models supported by the pipeline, or a dictionary with model class values.
        """
        if not isinstance(supported_models, list):  # Create from a model mapping
850
851
852
853
854
855
856
857
            supported_models_names = []
            for config, model in supported_models.items():
                # Mapping can now contain tuples of models for the same configuration.
                if isinstance(model, tuple):
                    supported_models_names.extend([_model.__name__ for _model in model])
                else:
                    supported_models_names.append(model.__name__)
            supported_models = supported_models_names
858
        if self.model.__class__.__name__ not in supported_models:
859
860
            logger.error(
                f"The model '{self.model.__class__.__name__}' is not supported for {self.task}. Supported models are {supported_models}."
861
862
            )

863
864
    @abstractmethod
    def _sanitize_parameters(self, **pipeline_parameters):
865
        """
866
867
868
869
        _sanitize_parameters will be called with any excessive named arguments from either `__init__` or `__call__`
        methods. It should return 3 dictionnaries of the resolved parameters used by the various `preprocess`,
        `forward` and `postprocess` methods. Do not fill dictionnaries if the caller didn't specify a kwargs. This
        let's you keep defaults in function signatures, which is more "natural".
870

871
872
        It is not meant to be called directly, it will be automatically called and the final parameters resolved by
        `__init__` and `__call__`
873
        """
874
        raise NotImplementedError("_sanitize_parameters not implemented")
875

876
877
878
879
880
881
882
    @abstractmethod
    def preprocess(self, input_: Any, **preprocess_parameters: Dict) -> Dict[str, GenericTensor]:
        """
        Preprocess will take the `input_` of a specific pipeline and return a dictionnary of everything necessary for
        `_forward` to run properly. It should contain at least one tensor, but might have arbitrary other items.
        """
        raise NotImplementedError("preprocess not implemented")
883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
    @abstractmethod
    def _forward(self, input_tensors: Dict[str, GenericTensor], **forward_parameters: Dict) -> ModelOutput:
        """
        _forward will receive the prepared dictionnary from `preprocess` and run it on the model. This method might
        involve the GPU or the CPU and should be agnostic to it. Isolating this function is the reason for `preprocess`
        and `postprocess` to exist, so that the hot path, this method generally can run as fast as possible.

        It is not meant to be called directly, `forward` is preferred. It is basically the same but contains additional
        code surrounding `_forward` making sure tensors and models are on the same device, disabling the training part
        of the code (leading to faster inference).
        """
        raise NotImplementedError("_forward not implemented")

    @abstractmethod
    def postprocess(self, model_outputs: ModelOutput, **postprocess_parameters: Dict) -> Any:
        """
        Postprocess will receive the raw outputs of the `_forward` method, generally tensors, and reformat them into
        something more friendly. Generally it will output a list or a dict or results (containing just strings and
        numbers).
903
        """
904
905
        raise NotImplementedError("postprocess not implemented")

906
907
908
909
910
911
    def get_inference_context(self):
        inference_context = (
            torch.inference_mode if version.parse(torch.__version__) >= version.parse("1.9.0") else torch.no_grad
        )
        return inference_context

912
    def forward(self, model_inputs, **forward_params):
913
914
        with self.device_placement():
            if self.framework == "tf":
915
916
917
                model_inputs["training"] = False
                model_outputs = self._forward(model_inputs, **forward_params)
            elif self.framework == "pt":
918
                inference_context = self.get_inference_context()
919
                with inference_context():
920
921
922
923
924
925
926
                    model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device)
                    model_outputs = self._forward(model_inputs, **forward_params)
                    model_outputs = self._ensure_tensor_on_device(model_outputs, device=torch.device("cpu"))
            else:
                raise ValueError(f"Framework {self.framework} is not supported")
        return model_outputs

927
928
929
    def get_iterator(
        self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
    ):
930
931
932
933
934
935
936
937
938
939
940
        if isinstance(inputs, collections.abc.Sized):
            dataset = PipelineDataset(inputs, self.preprocess, preprocess_params)
        else:
            if num_workers > 1:
                logger.warning(
                    "For iterable dataset using num_workers>1 is likely to result"
                    " in errors since everything is iterable, setting `num_workers=1`"
                    " to guarantee correctness."
                )
                num_workers = 1
            dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
941
942
943
        if "TOKENIZERS_PARALLELISM" not in os.environ:
            logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already")
            os.environ["TOKENIZERS_PARALLELISM"] = "false"
944
945
946
        collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, self.feature_extractor)
        dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn)
        model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
947
948
949
        final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
        return final_iterator

950
    def __call__(self, inputs, *args, num_workers=0, batch_size=1, **kwargs):
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        if args:
            logger.warning(f"Ignoring args : {args}")
        preprocess_params, forward_params, postprocess_params = self._sanitize_parameters(**kwargs)

        # Fuse __init__ params and __call__ params without modifying the __init__ ones.
        preprocess_params = {**self._preprocess_params, **preprocess_params}
        forward_params = {**self._forward_params, **forward_params}
        postprocess_params = {**self._postprocess_params, **postprocess_params}

        self.call_count += 1
        if self.call_count > 10 and self.framework == "pt" and self.device.type == "cuda":
            warnings.warn(
                "You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset",
                UserWarning,
            )
966
967
968
969
970
971
972
973
974
975
976
977

        is_dataset = Dataset is not None and isinstance(inputs, Dataset)
        is_generator = isinstance(inputs, types.GeneratorType)
        is_list = isinstance(inputs, list)

        is_iterable = is_dataset or is_generator or is_list

        # TODO make the get_iterator work also for `tf` (and `flax`).
        can_use_iterator = self.framework == "pt" and (is_dataset or is_generator or is_list)

        if is_list:
            if can_use_iterator:
978
                final_iterator = self.get_iterator(
979
                    inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params
980
981
982
983
984
                )
                outputs = [output for output in final_iterator]
                return outputs
            else:
                return self.run_multi(inputs, preprocess_params, forward_params, postprocess_params)
985
        elif can_use_iterator:
986
987
988
            return self.get_iterator(
                inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params
            )
989
990
        elif is_iterable:
            return self.iterate(inputs, preprocess_params, forward_params, postprocess_params)
991
        else:
992
993
994
995
996
997
998
999
1000
1001
            return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)

    def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params):
        return [self.run_single(item, preprocess_params, forward_params, postprocess_params) for item in inputs]

    def run_single(self, inputs, preprocess_params, forward_params, postprocess_params):
        model_inputs = self.preprocess(inputs, **preprocess_params)
        model_outputs = self.forward(model_inputs, **forward_params)
        outputs = self.postprocess(model_outputs, **postprocess_params)
        return outputs
1002
1003
1004
1005
1006
1007

    def iterate(self, inputs, preprocess_params, forward_params, postprocess_params):
        # This function should become `get_iterator` again, this is a temporary
        # easy solution.
        for input_ in inputs:
            yield self.run_single(input_, preprocess_params, forward_params, postprocess_params)
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035


class ChunkPipeline(Pipeline):
    def run_single(self, inputs, preprocess_params, forward_params, postprocess_params):
        all_outputs = []
        for model_inputs in self.preprocess(inputs, **preprocess_params):
            model_outputs = self.forward(model_inputs, **forward_params)
            all_outputs.append(model_outputs)
        outputs = self.postprocess(all_outputs, **postprocess_params)
        return outputs

    def get_iterator(
        self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
    ):
        if "TOKENIZERS_PARALLELISM" not in os.environ:
            logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already")
            os.environ["TOKENIZERS_PARALLELISM"] = "false"
        if num_workers > 1:
            logger.warning(
                "For ChunkPipeline using num_workers>0 is likely to result in errors since everything is iterable, setting `num_workers=1` to guarantee correctness."
            )
            num_workers = 1
        dataset = PipelineChunkIterator(inputs, self.preprocess, preprocess_params)
        collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, self.feature_extractor)
        dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn)
        model_iterator = PipelinePackIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
        final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
        return final_iterator