test_image_processing_yolos.py 15 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import pathlib
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available

26
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
27
28
29
30
31
32
33
34


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

35
    from transformers import YolosImageProcessor
NielsRogge's avatar
NielsRogge committed
36
37


38
class YolosImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
39
40
41
42
43
44
45
46
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
47
        size=None,
NielsRogge's avatar
NielsRogge committed
48
49
50
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
51
52
53
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
NielsRogge's avatar
NielsRogge committed
54
    ):
55
56
        # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
        size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
NielsRogge's avatar
NielsRogge committed
57
58
59
60
61
62
63
64
65
66
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
67
68
69
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
NielsRogge's avatar
NielsRogge committed
70

71
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
72
73
74
75
76
77
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
78
79
80
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
NielsRogge's avatar
NielsRogge committed
81
82
83
84
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
85
        This function computes the expected height and width when providing images to YolosImageProcessor,
NielsRogge's avatar
NielsRogge committed
86
87
88
89
90
91
92
93
94
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
95
96
                expected_height = int(self.size["shortest_edge"] * h / w)
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
97
            elif w > h:
98
99
                expected_height = self.size["shortest_edge"]
                expected_width = int(self.size["shortest_edge"] * w / h)
NielsRogge's avatar
NielsRogge committed
100
            else:
101
102
                expected_height = self.size["shortest_edge"]
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width


@require_torch
@require_vision
117
class YolosImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
118

119
    image_processing_class = YolosImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
120
121

    def setUp(self):
122
        self.image_processor_tester = YolosImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
123
124

    @property
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
        self.assertEqual(image_processor.do_pad, True)

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
143
        )
144
145
        self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
        self.assertEqual(image_processor.do_pad, False)
146

NielsRogge's avatar
NielsRogge committed
147
148
149
150
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
151
152
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
153
        # create random PIL images
154
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
155
156
157
158
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
159
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
160

161
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
162
163
164

        self.assertEqual(
            encoded_images.shape,
165
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
166
167
168
        )

        # Test batched
169
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
170

171
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
172
173
174
        self.assertEqual(
            encoded_images.shape,
            (
175
176
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
177
178
179
180
181
182
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
183
184
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
185
        # create random numpy tensors
186
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
187
188
189
190
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
191
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
192

193
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
194
195
196

        self.assertEqual(
            encoded_images.shape,
197
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
198
199
200
        )

        # Test batched
201
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
202

203
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
204
205
206
207

        self.assertEqual(
            encoded_images.shape,
            (
208
209
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
210
211
212
213
214
215
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
216
217
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
218
        # create random PyTorch tensors
219
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
220
221
222
223
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
224
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
225

226
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
227
228
229

        self.assertEqual(
            encoded_images.shape,
230
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
231
232
233
        )

        # Test batched
234
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
235

236
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
237
238
239
240

        self.assertEqual(
            encoded_images.shape,
            (
241
242
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
243
244
245
246
247
248
                expected_height,
                expected_width,
            ),
        )

    def test_equivalence_padding(self):
249
250
251
        # Initialize image_processings
        image_processing_1 = self.image_processing_class(**self.image_processor_dict)
        image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False)
NielsRogge's avatar
NielsRogge committed
252
        # create random PyTorch tensors
253
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
254
255
256
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

257
258
259
        # Test whether the method "pad" and calling the image processor return the same tensors
        encoded_images_with_method = image_processing_1.pad(image_inputs, return_tensors="pt")
        encoded_images = image_processing_2(image_inputs, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
260

261
262
263
        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
        )
NielsRogge's avatar
NielsRogge committed
264
265
266
267
268
269
270
271
272
273
274

    @slow
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        # encode them
275
276
        image_processing = YolosImageProcessor.from_pretrained("hustvl/yolos-small")
        encoding = image_processing(images=image, annotations=target, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
277
278
279
280
281
282

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
283
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
284
285
286

        # verify area
        expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
287
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
288
289
290
291
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
        expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
292
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
293
294
        # verify image_id
        expected_image_id = torch.tensor([39769])
295
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
296
297
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
298
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
299
300
        # verify class_labels
        expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
301
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
302
303
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
304
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
305
306
        # verify size
        expected_size = torch.tensor([800, 1066])
307
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
NielsRogge's avatar
NielsRogge committed
308
309
310
311
312
313
314
315
316
317
318
319
320

    @slow
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        # encode them
321
322
        image_processing = YolosImageProcessor(format="coco_panoptic")
        encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
323
324
325
326
327
328

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
329
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
330
331
332

        # verify area
        expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
333
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
334
335
336
337
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
        expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
338
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
339
340
        # verify image_id
        expected_image_id = torch.tensor([39769])
341
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
342
343
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
344
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
345
346
        # verify class_labels
        expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
347
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
348
        # verify masks
349
        expected_masks_sum = 822873
NielsRogge's avatar
NielsRogge committed
350
351
352
        self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
353
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
354
355
        # verify size
        expected_size = torch.tensor([800, 1066])
356
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))