test_image_processing_vilt.py 10 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import ViltImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class ViltImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
NielsRogge's avatar
NielsRogge committed
47
48
49
50
51
        size_divisor=2,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
52
        size = size if size is not None else {"shortest_edge": 30}
NielsRogge's avatar
NielsRogge committed
53
54
55
56
57
58
59
60
61
62
63
64
65
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.size_divisor = size_divisor
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

66
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
67
68
69
70
71
72
73
74
75
76
77
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "size_divisor": self.size_divisor,
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
78
        This function computes the expected height and width when providing images to ViltImageProcessor,
NielsRogge's avatar
NielsRogge committed
79
80
81
        assuming do_resize is set to True with a scalar size and size_divisor.
        """
        if not batched:
amyeroberts's avatar
amyeroberts committed
82
            size = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
83
84
85
86
87
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
amyeroberts's avatar
amyeroberts committed
88
            scale = size / min(w, h)
NielsRogge's avatar
NielsRogge committed
89
            if h < w:
amyeroberts's avatar
amyeroberts committed
90
                newh, neww = size, scale * w
NielsRogge's avatar
NielsRogge committed
91
            else:
amyeroberts's avatar
amyeroberts committed
92
                newh, neww = scale * h, size
NielsRogge's avatar
NielsRogge committed
93

amyeroberts's avatar
amyeroberts committed
94
            max_size = int((1333 / 800) * size)
NielsRogge's avatar
NielsRogge committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
            if max(newh, neww) > max_size:
                scale = max_size / max(newh, neww)
                newh = newh * scale
                neww = neww * scale

            newh, neww = int(newh + 0.5), int(neww + 0.5)
            expected_height, expected_width = (
                newh // self.size_divisor * self.size_divisor,
                neww // self.size_divisor * self.size_divisor,
            )

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width


@require_torch
@require_vision
119
class ViltImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
120

121
    image_processing_class = ViltImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
122
123

    def setUp(self):
124
        self.image_processor_tester = ViltImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
125
126

    @property
127
128
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
129

130
131
132
133
134
135
136
137
    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "size_divisor"))
NielsRogge's avatar
NielsRogge committed
138

139
140
141
    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 30})
142

143
144
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
145

NielsRogge's avatar
NielsRogge committed
146
147
148
149
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
150
151
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
152
        # create random PIL images
153
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
154
155
156
157
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
158
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
159

160
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
161
162
        self.assertEqual(
            encoded_images.shape,
163
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
164
165
166
        )

        # Test batched
167
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
168

169
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
170
171
172
        self.assertEqual(
            encoded_images.shape,
            (
173
174
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
175
176
177
178
179
180
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
181
182
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
183
        # create random numpy tensors
184
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
185
186
187
188
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
189
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
190

191
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
192
193
        self.assertEqual(
            encoded_images.shape,
194
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
195
196
197
        )

        # Test batched
198
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
199

200
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
201
202
203
        self.assertEqual(
            encoded_images.shape,
            (
204
205
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
206
207
208
209
210
211
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
212
213
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
214
        # create random PyTorch tensors
215
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
216
217
218
219
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
220
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
221

222
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs)
NielsRogge's avatar
NielsRogge committed
223
224
        self.assertEqual(
            encoded_images.shape,
225
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
NielsRogge's avatar
NielsRogge committed
226
227
228
        )

        # Test batched
229
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
230

231
        expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True)
NielsRogge's avatar
NielsRogge committed
232
233
234
        self.assertEqual(
            encoded_images.shape,
            (
235
236
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
237
238
239
240
241
242
                expected_height,
                expected_width,
            ),
        )

    def test_equivalence_pad_and_create_pixel_mask(self):
243
244
245
        # Initialize image_processings
        image_processing_1 = self.image_processing_class(**self.image_processor_dict)
        image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False)
NielsRogge's avatar
NielsRogge committed
246
        # create random PyTorch tensors
247
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
248
249
250
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

251
252
253
        # Test whether the method "pad_and_return_pixel_mask" and calling the image processor return the same tensors
        encoded_images_with_method = image_processing_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt")
        encoded_images = image_processing_2(image_inputs, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
254
255
256
257
258
259
260

        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
        )
        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4)
        )