test_image_processing_swin2sr.py 6.92 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import Swin2SRImageProcessor
    from transformers.image_transforms import get_image_size


class Swin2SRImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
        pad_size=8,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad
        self.pad_size = pad_size

62
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        return {
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
            "pad_size": self.pad_size,
        }

    def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        if equal_resolution:
            image_inputs = []
            for i in range(self.batch_size):
                image_inputs.append(
                    np.random.randint(
                        255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
                    )
                )
        else:
            image_inputs = []
            for i in range(self.batch_size):
                width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
                image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        if torchify:
            image_inputs = [torch.from_numpy(x) for x in image_inputs]

        return image_inputs


@require_torch
@require_vision
103
class Swin2SRImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
104

105
    image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
106
107

    def setUp(self):
108
        self.image_processor_tester = Swin2SRImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
109
110

    @property
111
112
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
113

114
115
116
117
118
119
    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_rescale"))
        self.assertTrue(hasattr(image_processor, "rescale_factor"))
        self.assertTrue(hasattr(image_processor, "do_pad"))
        self.assertTrue(hasattr(image_processor, "pad_size"))
NielsRogge's avatar
NielsRogge committed
120
121
122
123
124
125

    def test_batch_feature(self):
        pass

    def calculate_expected_size(self, image):
        old_height, old_width = get_image_size(image)
126
        size = self.image_processor_tester.pad_size
NielsRogge's avatar
NielsRogge committed
127
128
129
130
131
132

        pad_height = (old_height // size + 1) * size - old_height
        pad_width = (old_width // size + 1) * size - old_width
        return old_height + pad_height, old_width + pad_width

    def test_call_pil(self):
133
134
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
135
        # create random PIL images
136
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
137
138
139
140
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
141
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
142
143
144
145
146
        expected_height, expected_width = self.calculate_expected_size(np.array(image_inputs[0]))
        self.assertEqual(
            encoded_images.shape,
            (
                1,
147
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
148
149
150
151
152
153
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
154
155
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
156
        # create random numpy tensors
157
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
158
159
160
161
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
162
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
163
164
165
166
167
        expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
        self.assertEqual(
            encoded_images.shape,
            (
                1,
168
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
169
170
171
172
173
174
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
175
176
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
177
        # create random PyTorch tensors
178
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
179
180
181
182
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
183
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
184
185
186
187
188
        expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
        self.assertEqual(
            encoded_images.shape,
            (
                1,
189
                self.image_processor_tester.num_channels,
NielsRogge's avatar
NielsRogge committed
190
191
192
193
                expected_height,
                expected_width,
            ),
        )