test_image_processing_flava.py 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
25
26
27
28
29
30


if is_torch_available():
    import torch

if is_vision_available():
amyeroberts's avatar
amyeroberts committed
31
    import PIL
32

33
    from transformers import FlavaImageProcessor
34
    from transformers.image_utils import PILImageResampling
amyeroberts's avatar
amyeroberts committed
35
    from transformers.models.flava.image_processing_flava import (
36
37
38
39
40
41
42
43
44
        FLAVA_CODEBOOK_MEAN,
        FLAVA_CODEBOOK_STD,
        FLAVA_IMAGE_MEAN,
        FLAVA_IMAGE_STD,
    )
else:
    FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None


45
class FlavaImageProcessingTester(unittest.TestCase):
46
47
48
49
50
51
52
53
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
54
        size=None,
55
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
56
        crop_size=None,
57
        resample=None,
amyeroberts's avatar
amyeroberts committed
58
59
        do_rescale=True,
        rescale_factor=1 / 255,
60
61
62
63
64
65
66
67
68
69
        do_normalize=True,
        image_mean=FLAVA_IMAGE_MEAN,
        image_std=FLAVA_IMAGE_STD,
        input_size_patches=14,
        total_mask_patches=75,
        mask_group_max_patches=None,
        mask_group_min_patches=16,
        mask_group_min_aspect_ratio=0.3,
        mask_group_max_aspect_ratio=None,
        codebook_do_resize=True,
amyeroberts's avatar
amyeroberts committed
70
        codebook_size=None,
71
72
        codebook_resample=None,
        codebook_do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
73
        codebook_crop_size=None,
74
75
76
77
78
        codebook_do_map_pixels=True,
        codebook_do_normalize=True,
        codebook_image_mean=FLAVA_CODEBOOK_MEAN,
        codebook_image_std=FLAVA_CODEBOOK_STD,
    ):
amyeroberts's avatar
amyeroberts committed
79
80
81
82
83
        size = size if size is not None else {"height": 224, "width": 224}
        crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
        codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
        codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}

84
85
86
87
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.do_resize = do_resize
amyeroberts's avatar
amyeroberts committed
88
89
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
90
91
92
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.size = size
93
        self.resample = resample if resample is not None else PILImageResampling.BICUBIC
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size

        self.input_size_patches = input_size_patches
        self.total_mask_patches = total_mask_patches
        self.mask_group_max_patches = mask_group_max_patches
        self.mask_group_min_patches = mask_group_min_patches
        self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
        self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio

        self.codebook_do_resize = codebook_do_resize
        self.codebook_size = codebook_size
109
        self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
110
111
112
113
114
115
116
        self.codebook_do_center_crop = codebook_do_center_crop
        self.codebook_crop_size = codebook_crop_size
        self.codebook_do_map_pixels = codebook_do_map_pixels
        self.codebook_do_normalize = codebook_do_normalize
        self.codebook_image_mean = codebook_image_mean
        self.codebook_image_std = codebook_image_std

117
    def prepare_image_processor_dict(self):
118
119
120
121
122
123
124
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "resample": self.resample,
amyeroberts's avatar
amyeroberts committed
125
126
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "input_size_patches": self.input_size_patches,
            "total_mask_patches": self.total_mask_patches,
            "mask_group_max_patches": self.mask_group_max_patches,
            "mask_group_min_patches": self.mask_group_min_patches,
            "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
            "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
            "codebook_do_resize": self.codebook_do_resize,
            "codebook_size": self.codebook_size,
            "codebook_resample": self.codebook_resample,
            "codebook_do_center_crop": self.codebook_do_center_crop,
            "codebook_crop_size": self.codebook_crop_size,
            "codebook_do_map_pixels": self.codebook_do_map_pixels,
            "codebook_do_normalize": self.codebook_do_normalize,
            "codebook_image_mean": self.codebook_image_mean,
            "codebook_image_std": self.codebook_image_std,
        }

    def get_expected_image_size(self):
amyeroberts's avatar
amyeroberts committed
147
        return (self.size["height"], self.size["width"])
148
149
150
151
152
153
154
155
156

    def get_expected_mask_size(self):
        return (
            (self.input_size_patches, self.input_size_patches)
            if not isinstance(self.input_size_patches, tuple)
            else self.input_size_patches
        )

    def get_expected_codebook_image_size(self):
amyeroberts's avatar
amyeroberts committed
157
        return (self.codebook_size["height"], self.codebook_size["width"])
158
159
160
161


@require_torch
@require_vision
162
class FlavaImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
163

164
    image_processing_class = FlavaImageProcessor if is_vision_available() else None
165
166
167
    maxDiff = None

    def setUp(self):
168
        self.image_processor_tester = FlavaImageProcessingTester(self)
169
170

    @property
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "resample"))
        self.assertTrue(hasattr(image_processing, "crop_size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "masking_generator"))
        self.assertTrue(hasattr(image_processing, "codebook_do_resize"))
        self.assertTrue(hasattr(image_processing, "codebook_size"))
        self.assertTrue(hasattr(image_processing, "codebook_resample"))
        self.assertTrue(hasattr(image_processing, "codebook_do_center_crop"))
        self.assertTrue(hasattr(image_processing, "codebook_crop_size"))
        self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels"))
        self.assertTrue(hasattr(image_processing, "codebook_do_normalize"))
        self.assertTrue(hasattr(image_processing, "codebook_image_mean"))
        self.assertTrue(hasattr(image_processing, "codebook_image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224})
        self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112})

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66
205
        )
206
207
208
209
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
        self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33})
        self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66})
210

211
212
213
214
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
215
216
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
217
        # create random PIL images
218
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
219
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
220
            self.assertIsInstance(image, PIL.Image.Image)
221
222

        # Test not batched input
223
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
224
225
226
227

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

228
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
229
230
231

        self.assertEqual(
            encoded_images.pixel_values.shape,
232
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
233
234
235
        )

        # Test batched
236
237
        encoded_images = image_processing(image_inputs, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
238
239
240
241
242
243
244

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
245
246
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
247
248
249
250
251
252
                expected_height,
                expected_width,
            ),
        )

    def _test_call_framework(self, instance_class, prepare_kwargs):
253
254
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
255
        # create random tensors
256
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, **prepare_kwargs)
257
258
259
260
        for image in image_inputs:
            self.assertIsInstance(image, instance_class)

        # Test not batched input
261
        encoded_images = image_processing(image_inputs[0], return_tensors="pt")
262

263
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
264
265
        self.assertEqual(
            encoded_images.pixel_values.shape,
266
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
267
268
        )

269
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
270

271
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
272
273
274
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
275
276
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
277
278
279
280
281
                expected_height,
                expected_width,
            ),
        )

282
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
283
284
285
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
286
                self.image_processor_tester.batch_size,
287
288
289
290
291
292
                expected_height,
                expected_width,
            ),
        )

        # Test batched
293
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
294

295
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
296
297
298
        self.assertEqual(
            encoded_images.shape,
            (
299
300
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
301
302
303
304
305
306
                expected_height,
                expected_width,
            ),
        )

        # Test masking
307
        encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt")
308

309
        expected_height, expected_width = self.image_processor_tester.get_expected_image_size()
310
311
312
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
313
314
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
315
316
317
318
319
                expected_height,
                expected_width,
            ),
        )

320
        expected_height, expected_width = self.image_processor_tester.get_expected_mask_size()
321
322
323
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
324
                self.image_processor_tester.batch_size,
325
326
327
328
329
330
331
332
333
334
335
336
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})

    def test_call_pytorch(self):
        self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})

    def test_masking(self):
337
        # Initialize image_processing
338
        random.seed(1234)
339
340
        image_processing = self.image_processing_class(**self.image_processor_dict)
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
341
342

        # Test not batched input
343
        encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt")
344
345
346
        self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)

    def test_codebook_pixels(self):
347
348
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
349
        # create random PIL images
350
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
351
        for image in image_inputs:
amyeroberts's avatar
amyeroberts committed
352
            self.assertIsInstance(image, PIL.Image.Image)
353
354

        # Test not batched input
355
356
        encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
357
358
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
359
            (1, self.image_processor_tester.num_channels, expected_height, expected_width),
360
361
362
        )

        # Test batched
363
364
        encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size()
365
366
367
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (
368
369
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
370
371
372
373
                expected_height,
                expected_width,
            ),
        )