test_image_processing_deit.py 7.76 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import DeiTImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class DeiTImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
NielsRogge's avatar
NielsRogge committed
47
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
48
        crop_size=None,
NielsRogge's avatar
NielsRogge committed
49
50
51
52
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
53
54
55
        size = size if size is not None else {"height": 20, "width": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}

NielsRogge's avatar
NielsRogge committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

70
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
71
72
73
74
75
76
77
78
79
80
81
82
83
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
        }


@require_torch
@require_vision
84
class DeiTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
85

86
    image_processing_class = DeiTImageProcessor if is_vision_available() else None
87
    test_cast_dtype = True
NielsRogge's avatar
NielsRogge committed
88
89

    def setUp(self):
90
        self.image_processor_tester = DeiTImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
91
92

    @property
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 20, "width": 20})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
114

NielsRogge's avatar
NielsRogge committed
115
116
117
118
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
119
120
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
121
        # create random PIL images
122
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
123
124
125
126
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
127
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
128
129
130
131
        self.assertEqual(
            encoded_images.shape,
            (
                1,
132
133
134
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
135
136
137
138
            ),
        )

        # Test batched
139
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
140
141
142
        self.assertEqual(
            encoded_images.shape,
            (
143
144
145
146
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
147
148
149
150
            ),
        )

    def test_call_numpy(self):
151
152
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
153
        # create random numpy tensors
154
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
155
156
157
158
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
159
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
160
161
162
163
        self.assertEqual(
            encoded_images.shape,
            (
                1,
164
165
166
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
167
168
169
170
            ),
        )

        # Test batched
171
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
172
173
174
        self.assertEqual(
            encoded_images.shape,
            (
175
176
177
178
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
179
180
181
182
            ),
        )

    def test_call_pytorch(self):
183
184
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
185
        # create random PyTorch tensors
186
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
187
188
189
190
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
191
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
192
193
194
195
        self.assertEqual(
            encoded_images.shape,
            (
                1,
196
197
198
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
199
200
201
202
            ),
        )

        # Test batched
203
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
204
205
206
        self.assertEqual(
            encoded_images.shape,
            (
207
208
209
210
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
211
212
            ),
        )