test_image_processing_convnext.py 7.31 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022s HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
23

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import ConvNextImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class ConvNextImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
NielsRogge's avatar
NielsRogge committed
47
48
49
50
51
        crop_pct=0.875,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
52
        size = size if size is not None else {"shortest_edge": 20}
NielsRogge's avatar
NielsRogge committed
53
54
55
56
57
58
59
60
61
62
63
64
65
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.crop_pct = crop_pct
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

66
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
67
68
69
70
71
72
73
74
75
76
77
78
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "crop_pct": self.crop_pct,
        }


@require_torch
@require_vision
79
class ConvNextImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
80

81
    image_processing_class = ConvNextImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
82
83

    def setUp(self):
84
        self.image_processor_tester = ConvNextImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
85
86

    @property
87
88
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
89

90
91
92
93
94
95
96
97
    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "crop_pct"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
NielsRogge's avatar
NielsRogge committed
98

99
100
101
    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 20})
102

103
104
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
105

NielsRogge's avatar
NielsRogge committed
106
107
108
109
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
110
111
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
112
        # create random PIL images
113
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
114
115
116
117
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
118
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
119
120
121
122
        self.assertEqual(
            encoded_images.shape,
            (
                1,
123
124
125
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["shortest_edge"],
                self.image_processor_tester.size["shortest_edge"],
NielsRogge's avatar
NielsRogge committed
126
127
128
129
            ),
        )

        # Test batched
130
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
131
132
133
        self.assertEqual(
            encoded_images.shape,
            (
134
135
136
137
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["shortest_edge"],
                self.image_processor_tester.size["shortest_edge"],
NielsRogge's avatar
NielsRogge committed
138
139
140
141
            ),
        )

    def test_call_numpy(self):
142
143
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
144
        # create random numpy tensors
145
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
146
147
148
149
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
150
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
151
152
153
154
        self.assertEqual(
            encoded_images.shape,
            (
                1,
155
156
157
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["shortest_edge"],
                self.image_processor_tester.size["shortest_edge"],
NielsRogge's avatar
NielsRogge committed
158
159
160
161
            ),
        )

        # Test batched
162
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
163
164
165
        self.assertEqual(
            encoded_images.shape,
            (
166
167
168
169
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["shortest_edge"],
                self.image_processor_tester.size["shortest_edge"],
NielsRogge's avatar
NielsRogge committed
170
171
172
173
            ),
        )

    def test_call_pytorch(self):
174
175
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
176
        # create random PyTorch tensors
177
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
178
179
180
181
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
182
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
183
184
185
186
        self.assertEqual(
            encoded_images.shape,
            (
                1,
187
188
189
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["shortest_edge"],
                self.image_processor_tester.size["shortest_edge"],
NielsRogge's avatar
NielsRogge committed
190
191
192
193
            ),
        )

        # Test batched
194
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
195
196
197
        self.assertEqual(
            encoded_images.shape,
            (
198
199
200
201
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["shortest_edge"],
                self.image_processor_tester.size["shortest_edge"],
NielsRogge's avatar
NielsRogge committed
202
203
            ),
        )