test_image_processing_clip.py 11.6 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
23

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin
Suraj Patil's avatar
Suraj Patil committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import CLIPImageProcessor
Suraj Patil's avatar
Suraj Patil committed
34
35


36
class CLIPImageProcessingTester(unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
Suraj Patil's avatar
Suraj Patil committed
47
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
48
        crop_size=None,
Suraj Patil's avatar
Suraj Patil committed
49
50
51
        do_normalize=True,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
        image_std=[0.26862954, 0.26130258, 0.27577711],
52
        do_convert_rgb=True,
Suraj Patil's avatar
Suraj Patil committed
53
    ):
amyeroberts's avatar
amyeroberts committed
54
55
        size = size if size is not None else {"shortest_edge": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
Suraj Patil's avatar
Suraj Patil committed
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
69
        self.do_convert_rgb = do_convert_rgb
Suraj Patil's avatar
Suraj Patil committed
70

71
    def prepare_image_processor_dict(self):
Suraj Patil's avatar
Suraj Patil committed
72
73
74
75
76
77
78
79
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
80
            "do_convert_rgb": self.do_convert_rgb,
Suraj Patil's avatar
Suraj Patil committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        }

    def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        if equal_resolution:
            image_inputs = []
            for i in range(self.batch_size):
                image_inputs.append(
                    np.random.randint(
                        255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
                    )
                )
        else:
            image_inputs = []
            for i in range(self.batch_size):
                width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
                image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        if torchify:
            image_inputs = [torch.from_numpy(x) for x in image_inputs]

        return image_inputs


@require_torch
@require_vision
116
class CLIPImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
117

118
    image_processing_class = CLIPImageProcessor if is_vision_available() else None
Suraj Patil's avatar
Suraj Patil committed
119
120

    def setUp(self):
121
        self.image_processor_tester = CLIPImageProcessingTester(self)
Suraj Patil's avatar
Suraj Patil committed
122
123

    @property
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_convert_rgb"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 20})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
146

Suraj Patil's avatar
Suraj Patil committed
147
148
149
150
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
151
152
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
Suraj Patil's avatar
Suraj Patil committed
153
        # create random PIL images
154
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
Suraj Patil's avatar
Suraj Patil committed
155
156
157
158
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
159
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
160
161
162
163
        self.assertEqual(
            encoded_images.shape,
            (
                1,
164
165
166
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
167
168
169
170
            ),
        )

        # Test batched
171
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
172
173
174
        self.assertEqual(
            encoded_images.shape,
            (
175
176
177
178
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
179
180
181
182
            ),
        )

    def test_call_numpy(self):
183
184
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
Suraj Patil's avatar
Suraj Patil committed
185
        # create random numpy tensors
186
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
Suraj Patil's avatar
Suraj Patil committed
187
188
189
190
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
191
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
192
193
194
195
        self.assertEqual(
            encoded_images.shape,
            (
                1,
196
197
198
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
199
200
201
202
            ),
        )

        # Test batched
203
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
204
205
206
        self.assertEqual(
            encoded_images.shape,
            (
207
208
209
210
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
211
212
213
214
            ),
        )

    def test_call_pytorch(self):
215
216
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
Suraj Patil's avatar
Suraj Patil committed
217
        # create random PyTorch tensors
218
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
Suraj Patil's avatar
Suraj Patil committed
219
220
221
222
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
223
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
224
225
226
227
        self.assertEqual(
            encoded_images.shape,
            (
                1,
228
229
230
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
231
232
233
234
            ),
        )

        # Test batched
235
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
Suraj Patil's avatar
Suraj Patil committed
236
237
238
        self.assertEqual(
            encoded_images.shape,
            (
239
240
241
242
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
Suraj Patil's avatar
Suraj Patil committed
243
244
            ),
        )
245
246
247
248


@require_torch
@require_vision
249
class CLIPImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
250

251
    image_processing_class = CLIPImageProcessor if is_vision_available() else None
252
253

    def setUp(self):
254
        self.image_processor_tester = CLIPImageProcessingTester(self, num_channels=4)
255
256
257
        self.expected_encoded_image_num_channels = 3

    @property
258
259
260
261
262
263
264
265
266
267
268
269
270
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
271
272
273
274
275

    def test_batch_feature(self):
        pass

    def test_call_pil_four_channels(self):
276
277
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
278
        # create random PIL images
279
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
280
281
282
283
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
284
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
285
286
287
288
289
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.expected_encoded_image_num_channels,
290
291
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
292
293
294
295
            ),
        )

        # Test batched
296
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
297
298
299
        self.assertEqual(
            encoded_images.shape,
            (
300
                self.image_processor_tester.batch_size,
301
                self.expected_encoded_image_num_channels,
302
303
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
304
305
            ),
        )