test_image_processing_blip.py 10.5 KB
Newer Older
Younes Belkada's avatar
Younes Belkada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin
Younes Belkada's avatar
Younes Belkada committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import BlipImageProcessor


class BlipImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        do_pad=False,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
        image_std=[0.26862954, 0.26130258, 0.27577711],
        do_convert_rgb=True,
    ):
        size = size if size is not None else {"height": 20, "width": 20}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_pad = do_pad
        self.do_convert_rgb = do_convert_rgb

68
    def prepare_image_processor_dict(self):
Younes Belkada's avatar
Younes Belkada committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_convert_rgb": self.do_convert_rgb,
            "do_pad": self.do_pad,
        }

    def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"

        if equal_resolution:
            image_inputs = []
            for i in range(self.batch_size):
                image_inputs.append(
                    np.random.randint(
                        255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
                    )
                )
        else:
            image_inputs = []
            for i in range(self.batch_size):
                width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
                image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))

        if not numpify and not torchify:
            # PIL expects the channel dimension as last dimension
            image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        if torchify:
            image_inputs = [torch.from_numpy(x) for x in image_inputs]

        return image_inputs


@require_torch
@require_vision
112
class BlipImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
Younes Belkada's avatar
Younes Belkada committed
113

114
    image_processing_class = BlipImageProcessor if is_vision_available() else None
Younes Belkada's avatar
Younes Belkada committed
115
116

    def setUp(self):
117
        self.image_processor_tester = BlipImageProcessingTester(self)
Younes Belkada's avatar
Younes Belkada committed
118
119

    @property
120
121
122
123
124
125
126
127
128
129
130
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_resize"))
        self.assertTrue(hasattr(image_processor, "size"))
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "image_mean"))
        self.assertTrue(hasattr(image_processor, "image_std"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
Younes Belkada's avatar
Younes Belkada committed
131
132
133
134
135

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
136
137
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
138
        # create random PIL images
139
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
Younes Belkada's avatar
Younes Belkada committed
140
141
142
143
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
144
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
145
146
147
148
        self.assertEqual(
            encoded_images.shape,
            (
                1,
149
150
151
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
152
153
154
155
            ),
        )

        # Test batched
156
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
157
158
159
        self.assertEqual(
            encoded_images.shape,
            (
160
161
162
163
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
164
165
166
167
            ),
        )

    def test_call_numpy(self):
168
169
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
170
        # create random numpy tensors
171
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
Younes Belkada's avatar
Younes Belkada committed
172
173
174
175
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
176
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
177
178
179
180
        self.assertEqual(
            encoded_images.shape,
            (
                1,
181
182
183
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
184
185
186
187
            ),
        )

        # Test batched
188
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
189
190
191
        self.assertEqual(
            encoded_images.shape,
            (
192
193
194
195
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
196
197
198
199
            ),
        )

    def test_call_pytorch(self):
200
201
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
202
        # create random PyTorch tensors
203
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
Younes Belkada's avatar
Younes Belkada committed
204
205
206
207
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
208
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
209
210
211
212
        self.assertEqual(
            encoded_images.shape,
            (
                1,
213
214
215
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
216
217
218
219
            ),
        )

        # Test batched
220
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
221
222
223
        self.assertEqual(
            encoded_images.shape,
            (
224
225
226
227
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
228
229
230
231
232
233
            ),
        )


@require_torch
@require_vision
234
class BlipImageProcessingTestFourChannels(ImageProcessingSavingTestMixin, unittest.TestCase):
Younes Belkada's avatar
Younes Belkada committed
235

236
    image_processing_class = BlipImageProcessor if is_vision_available() else None
Younes Belkada's avatar
Younes Belkada committed
237
238

    def setUp(self):
239
        self.image_processor_tester = BlipImageProcessingTester(self, num_channels=4)
Younes Belkada's avatar
Younes Belkada committed
240
241
242
        self.expected_encoded_image_num_channels = 3

    @property
243
244
245
246
247
248
249
250
251
252
253
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processor, "do_resize"))
        self.assertTrue(hasattr(image_processor, "size"))
        self.assertTrue(hasattr(image_processor, "do_normalize"))
        self.assertTrue(hasattr(image_processor, "image_mean"))
        self.assertTrue(hasattr(image_processor, "image_std"))
        self.assertTrue(hasattr(image_processor, "do_convert_rgb"))
Younes Belkada's avatar
Younes Belkada committed
254
255
256
257
258

    def test_batch_feature(self):
        pass

    def test_call_pil_four_channels(self):
259
260
        # Initialize image_processor
        image_processor = self.image_processing_class(**self.image_processor_dict)
Younes Belkada's avatar
Younes Belkada committed
261
        # create random PIL images
262
        image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
Younes Belkada's avatar
Younes Belkada committed
263
264
265
266
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
267
        encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
268
269
270
271
272
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.expected_encoded_image_num_channels,
273
274
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
275
276
277
278
            ),
        )

        # Test batched
279
        encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
Younes Belkada's avatar
Younes Belkada committed
280
281
282
        self.assertEqual(
            encoded_images.shape,
            (
283
                self.image_processor_tester.batch_size,
Younes Belkada's avatar
Younes Belkada committed
284
                self.expected_encoded_image_num_channels,
285
286
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
Younes Belkada's avatar
Younes Belkada committed
287
288
            ),
        )