"src/vscode:/vscode.git/clone" did not exist on "78c799c554db4dd9b8f359b64d9acf2a2892bbfd"
test_image_processing_beit.py 13.4 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
20
from datasets import load_dataset
NielsRogge's avatar
NielsRogge committed
21
22

from transformers.testing_utils import require_torch, require_vision
23
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
24

25
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
26
27
28
29
30
31
32
33


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

34
    from transformers import BeitImageProcessor
NielsRogge's avatar
NielsRogge committed
35
36


37
class BeitImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
38
39
40
41
42
43
44
45
46
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
47
        size=None,
NielsRogge's avatar
NielsRogge committed
48
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
49
        crop_size=None,
NielsRogge's avatar
NielsRogge committed
50
51
52
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
amyeroberts's avatar
amyeroberts committed
53
        do_reduce_labels=False,
NielsRogge's avatar
NielsRogge committed
54
    ):
amyeroberts's avatar
amyeroberts committed
55
56
        size = size if size is not None else {"height": 20, "width": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
NielsRogge's avatar
NielsRogge committed
57
58
59
60
61
62
63
64
65
66
67
68
69
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
amyeroberts's avatar
amyeroberts committed
70
        self.do_reduce_labels = do_reduce_labels
NielsRogge's avatar
NielsRogge committed
71

72
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
73
74
75
76
77
78
79
80
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
amyeroberts's avatar
amyeroberts committed
81
            "do_reduce_labels": self.do_reduce_labels,
NielsRogge's avatar
NielsRogge committed
82
83
84
        }


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def prepare_semantic_single_inputs():
    dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image = Image.open(dataset[0]["file"])
    map = Image.open(dataset[1]["file"])

    return image, map


def prepare_semantic_batch_inputs():
    ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image1 = Image.open(ds[0]["file"])
    map1 = Image.open(ds[1]["file"])
    image2 = Image.open(ds[2]["file"])
    map2 = Image.open(ds[3]["file"])

    return [image1, image2], [map1, map2]


NielsRogge's avatar
NielsRogge committed
105
106
@require_torch
@require_vision
107
class BeitImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
108

109
    image_processing_class = BeitImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
110
111

    def setUp(self):
112
        self.image_processor_tester = BeitImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
113
114

    @property
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 20, "width": 20})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
        self.assertEqual(image_processor.do_reduce_labels, False)

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, crop_size=84, reduce_labels=True
136
        )
137
138
139
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
        self.assertEqual(image_processor.do_reduce_labels, True)
140

NielsRogge's avatar
NielsRogge committed
141
142
143
144
    def test_batch_feature(self):
        pass

    def test_call_pil(self):
145
146
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
147
        # create random PIL images
148
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
149
150
151
152
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
153
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
154
155
156
157
        self.assertEqual(
            encoded_images.shape,
            (
                1,
158
159
160
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
161
162
163
164
            ),
        )

        # Test batched
165
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
166
167
168
        self.assertEqual(
            encoded_images.shape,
            (
169
170
171
172
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
173
174
175
176
            ),
        )

    def test_call_numpy(self):
177
178
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
179
        # create random numpy tensors
180
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
181
182
183
184
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
185
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
186
187
188
189
        self.assertEqual(
            encoded_images.shape,
            (
                1,
190
191
192
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
193
194
195
196
            ),
        )

        # Test batched
197
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
198
199
200
        self.assertEqual(
            encoded_images.shape,
            (
201
202
203
204
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
205
206
207
208
            ),
        )

    def test_call_pytorch(self):
209
210
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
211
        # create random PyTorch tensors
212
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
213
214
215
216
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
217
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
218
219
220
221
        self.assertEqual(
            encoded_images.shape,
            (
                1,
222
223
224
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
225
226
227
228
            ),
        )

        # Test batched
229
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
230
231
232
        self.assertEqual(
            encoded_images.shape,
            (
233
234
235
236
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
NielsRogge's avatar
NielsRogge committed
237
238
            ),
        )
239
240

    def test_call_segmentation_maps(self):
241
242
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
243
        # create random PyTorch tensors
244
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
245
246
247
248
249
250
        maps = []
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)
            maps.append(torch.zeros(image.shape[-2:]).long())

        # Test not batched input
251
        encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt")
252
253
254
255
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
256
257
258
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
259
260
261
262
263
264
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
265
266
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
267
268
269
270
271
272
273
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched
274
        encoding = image_processing(image_inputs, maps, return_tensors="pt")
275
276
277
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
278
279
280
281
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
282
283
284
285
286
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
287
288
289
                self.image_processor_tester.batch_size,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
290
291
292
293
294
295
296
297
298
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test not batched input (PIL images)
        image, segmentation_map = prepare_semantic_single_inputs()

299
        encoding = image_processing(image, segmentation_map, return_tensors="pt")
300
301
302
303
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
304
305
306
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
307
308
309
310
311
312
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
313
314
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
315
316
317
318
319
320
321
322
323
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched input (PIL images)
        images, segmentation_maps = prepare_semantic_batch_inputs()

324
        encoding = image_processing(images, segmentation_maps, return_tensors="pt")
325
326
327
328
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                2,
329
330
331
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
332
333
334
335
336
337
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                2,
338
339
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
340
341
342
343
344
345
346
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

    def test_reduce_labels(self):
347
348
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
349
350
351

        # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
        image, map = prepare_semantic_single_inputs()
352
        encoding = image_processing(image, map, return_tensors="pt")
353
354
355
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 150)

356
357
        image_processing.reduce_labels = True
        encoding = image_processing(image, map, return_tensors="pt")
358
359
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)