optimization_pytorch.py 5.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import math
import torch
from torch.optim import Optimizer
from torch.nn.utils import clip_grad_norm_

def warmup_cosine(x, warmup=0.002):
    s = 1 if x <= warmup else 0
    return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x)))

def warmup_constant(x, warmup=0.002):
    s = 1 if x <= warmup else 0
    return s*(x/warmup) + (1-s)*1

def warmup_linear(x, warmup=0.002):
    s = 1 if x <= warmup else 0
    return (s*(x/warmup) + (1-s))*(1-x)

SCHEDULES = {
    'warmup_cosine':warmup_cosine,
    'warmup_constant':warmup_constant,
    'warmup_linear':warmup_linear,
}


class OpenAIAdam(Optimizer):
    """Implements Open AI version of Adam algorithm with weight decay fix.
    """
    def __init__(self, params, lr, schedule, warmup, t_total,
                 b1=0.9, b2=0.999, e=1e-6, l2=0,
                 vector_l2=False, max_grad_norm=-1, **kwargs):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0 <= warmup:
            raise ValueError("Invalid warmup: {}".format(warmup))
        if not 0.0 <= b1 < 1.0:
            raise ValueError("Invalid b1 parameter: {}".format(b1))
        if not 0.0 <= b2 < 1.0:
            raise ValueError("Invalid b2 parameter: {}".format(b2))
        if not 0.0 <= e:
            raise ValueError("Invalid epsilon value: {}".format(e))
        defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
                        b1=b1, b2=b2, e=e, l2=l2, vector_l2=vector_l2,
                        max_grad_norm=max_grad_norm)
        super(OpenAIAdam, self).__init__(params, defaults)

    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
                schedule_fct = SCHEDULES[group['schedule']]
                lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
                lr.append(lr_scheduled)
        return lr

    def to(self, device):
        """ Move the optimizer state to a specified device"""
        for state in self.state.values():
            state['exp_avg'].to(device)
            state['exp_avg_sq'].to(device)

    def initialize_step(self, initial_step):
        """Initialize state with a defined step (but we don't have stored averaged).
        Arguments:
            initial_step (int): Initial step number.
        """
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                # State initialization
                state['step'] = initial_step
                # Exponential moving average of gradient values
                state['exp_avg'] = torch.zeros_like(p.data)
                # Exponential moving average of squared gradient values
                state['exp_avg_sq'] = torch.zeros_like(p.data)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['b1'], group['b2']

                state['step'] += 1

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                denom = exp_avg_sq.sqrt().add_(group['e'])

                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']

                schedule_fct = SCHEDULES[group['schedule']]
                lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
                step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1

                p.data.addcdiv_(-step_size, exp_avg, denom)

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
                # Instead we want ot decay the weights in a manner that doesn't interact
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
                if (len(p.size()) > 1 or group['vector_l2']) and group['l2'] > 0:
                    p.data.add_(-lr_scheduled * group['l2'], p.data)

        return loss