test_modeling_mbart.py 29 KB
Newer Older
1
2
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
Sylvain Gugger's avatar
Sylvain Gugger committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch MBART model."""
16
17
18

import copy
import tempfile
19
20
import unittest

21
from transformers import MBartConfig, is_torch_available
22
23
24
25
26
27
28
29
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    require_torch_fp16,
    slow,
    torch_device,
)
30
from transformers.utils import cached_property
31

32
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
33
34
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
35
from ...test_pipeline_mixin import PipelineTesterMixin
36
37
38
39


if is_torch_available():
    import torch
40

41
    from transformers import (
42
43
        AutoTokenizer,
        BatchEncoding,
44
        MBartForCausalLM,
45
        MBartForConditionalGeneration,
46
47
        MBartForQuestionAnswering,
        MBartForSequenceClassification,
48
        MBartModel,
49
    )
50
    from transformers.models.mbart.modeling_mbart import MBartDecoder, MBartEncoder
51
52


53
54
55
56
57
58
def prepare_mbart_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
59
60
    head_mask=None,
    decoder_head_mask=None,
61
    cross_attn_head_mask=None,
62
63
64
65
66
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
67
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
68
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
69
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
70
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
71
72
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
73
74
75
76
77
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
78
79
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
80
        "cross_attn_head_mask": cross_attn_head_mask,
81
    }
82
83


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class MBartModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
100
        max_position_embeddings=100,
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

123
124
125
126
127
128
        # forcing a certain token to be generated, sets all other tokens to -inf
        # if however the token to be generated is already at -inf then it can lead token
        # `nan` values and thus break generation
        self.forced_bos_token_id = None
        self.forced_eos_token_id = None

129
130
131
132
133
134
135
136
137
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

138
139
140
141
142
143
        config = self.get_config()
        inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def get_config(self):
        return MBartConfig(
144
145
146
147
148
149
150
151
152
153
154
155
156
157
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
158
159
            forced_bos_token_id=self.forced_bos_token_id,
            forced_eos_token_id=self.forced_eos_token_id,
160
161
162
        )

    def prepare_config_and_inputs_for_common(self):
163
164
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict
165

166
167
168
169
    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = MBartModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
170
        head_mask = inputs_dict["head_mask"]
171

172
        # first forward pass
173
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
198
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
199
200
201
202
203
204
205

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = MBartModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = MBartEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = MBartDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
234
class MBartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
235
236
237
238
239
240
    all_model_classes = (
        (MBartModel, MBartForConditionalGeneration, MBartForSequenceClassification, MBartForQuestionAnswering)
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (MBartForConditionalGeneration,) if is_torch_available() else ()
241
242
243
244
245
246
247
248
    pipeline_model_mapping = (
        {
            "feature-extraction": MBartModel,
            "fill-mask": MBartForConditionalGeneration,
            "question-answering": MBartForQuestionAnswering,
            "summarization": MBartForConditionalGeneration,
            "text-classification": MBartForSequenceClassification,
            "text-generation": MBartForCausalLM,
Yih-Dar's avatar
Yih-Dar committed
249
250
            "text2text-generation": MBartForConditionalGeneration,
            "translation": MBartForConditionalGeneration,
251
252
253
254
255
            "zero-shot": MBartForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
256
    is_encoder_decoder = True
Sylvain Gugger's avatar
Sylvain Gugger committed
257
    fx_compatible = False  # Fix me Michael
258
259
    test_pruning = False
    test_missing_keys = False
260

261
262
263
264
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
265
        if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
266
267
268
269
            return True

        return False

270
    def setUp(self):
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        self.model_tester = MBartModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MBartConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

    # MBartForSequenceClassification does not support inputs_embeds
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in (MBartModel, MBartForConditionalGeneration, MBartForQuestionAnswering):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]

325
    @require_torch_fp16
326
327
328
329
330
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = MBartForConditionalGeneration(config).eval().to(torch_device)
331
        model.half()
332
333
334
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

Marc Sun's avatar
Marc Sun committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    def test_ensure_weights_are_shared(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()

        config.tie_word_embeddings = True
        model = MBartForConditionalGeneration(config)

        # MBart shares four weights.
        # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors.
        self.assertEqual(
            len(
                {
                    model.get_output_embeddings().weight.data_ptr(),
                    model.get_input_embeddings().weight.data_ptr(),
                    model.base_model.decoder.embed_tokens.weight.data_ptr(),
                    model.base_model.encoder.embed_tokens.weight.data_ptr(),
                }
            ),
            1,
        )

        config.tie_word_embeddings = False
        model = MBartForConditionalGeneration(config)

        # MBart shares four weights.
        # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors.
        self.assertEqual(
            len(
                {
                    model.get_output_embeddings().weight.data_ptr(),
                    model.get_input_embeddings().weight.data_ptr(),
                    model.base_model.decoder.embed_tokens.weight.data_ptr(),
                    model.base_model.encoder.embed_tokens.weight.data_ptr(),
                }
            ),
            2,
        )

372
373
374
375
376
377
    @unittest.skip(
        reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
    )
    def test_load_save_without_tied_weights(self):
        pass

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
400
401


402
@require_torch
403
404
@require_sentencepiece
@require_tokenizers
405
406
class AbstractSeq2SeqIntegrationTest(unittest.TestCase):
    maxDiff = 1000  # longer string compare tracebacks
407
408
409
410
    checkpoint_name = None

    @classmethod
    def setUpClass(cls):
Lysandre Debut's avatar
Lysandre Debut committed
411
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.checkpoint_name, use_fast=False)
412
413
414
415
416
        return cls

    @cached_property
    def model(self):
        """Only load the model if needed."""
417
        model = MBartForConditionalGeneration.from_pretrained(self.checkpoint_name).to(torch_device)
418
419
420
421
422
423
        if "cuda" in torch_device:
            model = model.half()
        return model


@require_torch
424
425
@require_sentencepiece
@require_tokenizers
426
class MBartEnroIntegrationTest(AbstractSeq2SeqIntegrationTest):
427
428
429
430
431
432
433
    checkpoint_name = "facebook/mbart-large-en-ro"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
Sylvain Gugger's avatar
Sylvain Gugger committed
434
435
436
        "Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei"
        ' pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor'
        " face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛a 艧i mizeria pentru milioane de oameni.",
437
    ]
438
    expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, 250004]
439

Sam Shleifer's avatar
Sam Shleifer committed
440
441
    @slow
    def test_enro_generate_one(self):
442
        batch: BatchEncoding = self.tokenizer(
443
            ["UN Chief Says There Is No Military Solution in Syria"], return_tensors="pt"
Sam Shleifer's avatar
Sam Shleifer committed
444
445
446
447
448
        ).to(torch_device)
        translated_tokens = self.model.generate(**batch)
        decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
        self.assertEqual(self.tgt_text[0], decoded[0])
        # self.assertEqual(self.tgt_text[1], decoded[1])
449
450

    @slow
Sam Shleifer's avatar
Sam Shleifer committed
451
    def test_enro_generate_batch(self):
452
453
454
        batch: BatchEncoding = self.tokenizer(self.src_text, return_tensors="pt", padding=True, truncation=True).to(
            torch_device
        )
455
456
        translated_tokens = self.model.generate(**batch)
        decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
457
        assert self.tgt_text == decoded
458
459
460
461
462

    def test_mbart_enro_config(self):
        mbart_models = ["facebook/mbart-large-en-ro"]
        expected = {"scale_embedding": True, "output_past": True}
        for name in mbart_models:
463
            config = MBartConfig.from_pretrained(name)
464
465
466
467
468
469
470
471
            for k, v in expected.items():
                try:
                    self.assertEqual(v, getattr(config, k))
                except AssertionError as e:
                    e.args += (name, k)
                    raise

    def test_mbart_fast_forward(self):
472
        config = MBartConfig(
473
474
475
476
477
478
479
480
481
482
483
            vocab_size=99,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            add_final_layer_norm=True,
        )
484
        lm_model = MBartForConditionalGeneration(config).to(torch_device)
485
486
487
488
        context = torch.tensor(
            [[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long
        )
        summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long)
Sylvain Gugger's avatar
Sylvain Gugger committed
489
        result = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary)
490
        expected_shape = (*summary.shape, config.vocab_size)
491
        self.assertEqual(result.logits.shape, expected_shape)
492
493


494
@require_torch
495
496
@require_sentencepiece
@require_tokenizers
497
class MBartCC25IntegrationTest(AbstractSeq2SeqIntegrationTest):
498
499
500
501
502
503
504
    checkpoint_name = "facebook/mbart-large-cc25"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        " I ate lunch twice yesterday",
    ]
    tgt_text = ["艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria", "to be padded"]

amyeroberts's avatar
amyeroberts committed
505
    @unittest.skip(reason="This test is broken, still generates english")
506
    def test_cc25_generate(self):
507
        inputs = self.tokenizer([self.src_text[0]], return_tensors="pt").to(torch_device)
508
509
510
511
512
513
        translated_tokens = self.model.generate(
            input_ids=inputs["input_ids"].to(torch_device),
            decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"],
        )
        decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
        self.assertEqual(self.tgt_text[0], decoded[0])
514
515
516

    @slow
    def test_fill_mask(self):
517
        inputs = self.tokenizer(["One of the best <mask> I ever read!"], return_tensors="pt").to(torch_device)
518
519
520
521
522
523
524
        outputs = self.model.generate(
            inputs["input_ids"], decoder_start_token_id=self.tokenizer.lang_code_to_id["en_XX"], num_beams=1
        )
        prediction: str = self.tokenizer.batch_decode(
            outputs, clean_up_tokenization_spaces=True, skip_special_tokens=True
        )[0]
        self.assertEqual(prediction, "of the best books I ever read!")
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541


class MBartStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
542
        decoder_layers=2,
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
        encoder_attention_heads=4,
        decoder_attention_heads=4,
        max_position_embeddings=30,
        is_encoder_decoder=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings
        self.is_encoder_decoder = is_encoder_decoder

        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = MBartConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            encoder_attention_heads=self.encoder_attention_heads,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
            is_encoder_decoder=self.is_encoder_decoder,
        )

        return (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        )

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = MBartDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        model = MBartDecoder(config=config).to(torch_device).eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class MBartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (MBartDecoder, MBartForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (MBartForCausalLM,) if is_torch_available() else ()
    test_pruning = False
    is_encoder_decoder = False

    def setUp(
        self,
    ):
        self.model_tester = MBartStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=MBartConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)

amyeroberts's avatar
amyeroberts committed
740
    @unittest.skip(reason="Decoder cannot retain gradients")
741
742
    def test_retain_grad_hidden_states_attentions(self):
        return