run_pplm.py 28.4 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
# coding=utf-8
Rosanne Liu's avatar
Rosanne Liu committed
3

4
# Copyright (c) 2019 Uber Technologies, Inc.
Julien Chaumond's avatar
Julien Chaumond committed
5
#
6
7
8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Julien Chaumond's avatar
Julien Chaumond committed
9
#
10
# http://www.apache.org/licenses/LICENSE-2.0
Julien Chaumond's avatar
Julien Chaumond committed
11
#
12
13
14
15
16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Julien Chaumond's avatar
Julien Chaumond committed
17
18
19

"""
Example command with bag of words:
20
python run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95
Julien Chaumond's avatar
Julien Chaumond committed
21
22

Example command with discriminator:
23
python run_pplm.py -D sentiment --class_label 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
Julien Chaumond's avatar
Julien Chaumond committed
24
25
26
"""

import argparse
27
import json
Julien Chaumond's avatar
Julien Chaumond committed
28
29
30
31
32
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
33
from pplm_classification_head import ClassificationHead
34
from torch import nn
Julien Chaumond's avatar
Julien Chaumond committed
35
36
from tqdm import trange

Sylvain Gugger's avatar
Sylvain Gugger committed
37
from transformers import GPT2LMHeadModel, GPT2Tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
38
from transformers.file_utils import cached_path
Aymeric Augustin's avatar
Aymeric Augustin committed
39

Julien Chaumond's avatar
Julien Chaumond committed
40
41
42
43
44

PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
45
BIG_CONST = 1e10
Julien Chaumond's avatar
Julien Chaumond committed
46
47

BAG_OF_WORDS_ARCHIVE_MAP = {
48
49
50
51
52
53
54
    "legal": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    "military": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    "politics": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    "religion": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    "science": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    "space": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    "technology": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
Julien Chaumond's avatar
Julien Chaumond committed
55
56
57
58
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
Julien Chaumond's avatar
Julien Chaumond committed
59
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
64
        "pretrained_model": "gpt2-medium",
Julien Chaumond's avatar
Julien Chaumond committed
65
66
    },
    "sentiment": {
Julien Chaumond's avatar
Julien Chaumond committed
67
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
68
69
70
71
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
72
        "pretrained_model": "gpt2-medium",
Julien Chaumond's avatar
Julien Chaumond committed
73
74
75
76
    },
}


Piero Molino's avatar
Piero Molino committed
77
78
79
80
81
82
83
84
85
86
87
88
def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
89
90
            return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits)
        return torch.where(logits < batch_mins, torch.ones_like(logits) * -BIG_CONST, logits)
Piero Molino's avatar
Piero Molino committed
91
92


93
def perturb_past(
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    past,
    model,
    last,
    unpert_past=None,
    unpert_logits=None,
    accumulated_hidden=None,
    grad_norms=None,
    stepsize=0.01,
    one_hot_bows_vectors=None,
    classifier=None,
    class_label=None,
    loss_type=0,
    num_iterations=3,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    kl_scale=0.01,
    device="cuda",
113
):
Piero Molino's avatar
Piero Molino committed
114
    # Generate inital perturbed past
115
    grad_accumulator = [(np.zeros(p.shape).astype("float32")) for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
116
117
118
119

    if accumulated_hidden is None:
        accumulated_hidden = 0

120
    if decay:
121
        decay_mask = torch.arange(0.0, 1.0 + SMALL_CONST, 1.0 / (window_length))[1:]
Julien Chaumond's avatar
Julien Chaumond committed
122
123
124
    else:
        decay_mask = 1.0

125
    # TODO fix this comment (SUMANTH)
Piero Molino's avatar
Piero Molino committed
126
    # Generate a mask is gradient perturbated is based on a past window
127
    _, _, _, curr_length, _ = past[0].shape
Piero Molino's avatar
Piero Molino committed
128

129
    if curr_length > window_length and window_length > 0:
130
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple([window_length]) + tuple(past[0].shape[-1:])
Piero Molino's avatar
Piero Molino committed
131

132
        zeros_key_val_shape = (
133
            tuple(past[0].shape[:-2]) + tuple([curr_length - window_length]) + tuple(past[0].shape[-1:])
134
        )
Julien Chaumond's avatar
Julien Chaumond committed
135
136
137
138
139

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

140
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)), dim=-2).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
141
    else:
142
        window_mask = torch.ones_like(past[0]).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
143

144
    # accumulate perturbations for num_iterations
Julien Chaumond's avatar
Julien Chaumond committed
145
    loss_per_iter = []
146
    new_accumulated_hidden = None
147
    for i in range(num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
148
        print("Iteration ", i + 1)
149
        curr_perturbation = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator]
songyouwei's avatar
songyouwei committed
150
151
152
        # make sure p_.grad is not None
        for p_ in curr_perturbation:
            p_.retain_grad()
153
154
155
156

        # Compute hidden using perturbed past
        perturbed_past = list(map(add, past, curr_perturbation))
        _, _, _, curr_length, _ = curr_perturbation[0].shape
chutaklee's avatar
chutaklee committed
157
158
        lm_output = model(last, past_key_values=perturbed_past)
        all_logits, all_hidden = lm_output["logits"], lm_output["hidden_states"]
Piero Molino's avatar
Piero Molino committed
159
        hidden = all_hidden[-1]
160
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden, dim=1).detach()
161
162
        # TODO: Check the layer-norm consistency of this with trained discriminator (Sumanth)
        logits = all_logits[:, -1, :]
163
        probs = nn.functional.softmax(logits, dim=-1)
Piero Molino's avatar
Piero Molino committed
164
165
166

        loss = 0.0
        loss_list = []
167
168
169
170
171
172
        if loss_type == PPLM_BOW or loss_type == PPLM_BOW_DISCRIM:
            for one_hot_bow in one_hot_bows_vectors:
                bow_logits = torch.mm(probs, torch.t(one_hot_bow))
                bow_loss = -torch.log(torch.sum(bow_logits))
                loss += bow_loss
                loss_list.append(bow_loss)
Piero Molino's avatar
Piero Molino committed
173
174
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

175
        if loss_type == 2 or loss_type == 3:
176
            ce_loss = nn.CrossEntropyLoss()
177
178
179
180
181
182
            # TODO why we need to do this assignment and not just using unpert_past? (Sumanth)
            curr_unpert_past = unpert_past
            curr_probs = torch.unsqueeze(probs, dim=1)
            wte = model.resize_token_embeddings()
            for _ in range(horizon_length):
                inputs_embeds = torch.matmul(curr_probs, wte.weight.data)
chutaklee's avatar
chutaklee committed
183
                lm_output = model(past_key_values=curr_unpert_past, inputs_embeds=inputs_embeds)
184
185
186
187
188
189
190
191
                curr_all_logits, curr_unpert_past, curr_all_hidden = (
                    lm_output["logits"],
                    lm_output["past_key_values"],
                    lm_output["hidden_states"],
                )
                curr_logits = curr_all_logits[:, -1, :]
                curr_probs = nn.functional.softmax(curr_logits, dim=-1)
                curr_probs = torch.unsqueeze(curr_probs, dim=1)
192
                curr_hidden = curr_all_hidden[-1]
193
                new_accumulated_hidden = new_accumulated_hidden + torch.sum(curr_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
194

195
            prediction = classifier(new_accumulated_hidden / (curr_length + 1 + horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
196

197
            label = torch.tensor(prediction.shape[0] * [class_label], device=device, dtype=torch.long)
198
            discrim_loss = ce_loss(prediction, label)
Julien Chaumond's avatar
Julien Chaumond committed
199
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
200
201
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
202

Piero Molino's avatar
Piero Molino committed
203
204
        kl_loss = 0.0
        if kl_scale > 0.0:
205
            unpert_probs = nn.functional.softmax(unpert_logits[:, -1, :], dim=-1)
206
207
            unpert_probs = unpert_probs + SMALL_CONST * (unpert_probs <= SMALL_CONST).float().to(device).detach()
            correction = SMALL_CONST * (probs <= SMALL_CONST).float().to(device).detach()
208
            corrected_probs = probs + correction.detach()
209
210
            kl_loss = kl_scale * ((corrected_probs * (corrected_probs / unpert_probs).log()).sum())
            print(" kl_loss", kl_loss.data.cpu().numpy())
211
            loss += kl_loss
Julien Chaumond's avatar
Julien Chaumond committed
212
213

        loss_per_iter.append(loss.data.cpu().numpy())
214
        print(" pplm_loss", (loss - kl_loss).data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
215

216
        # compute gradients
Rosanne Liu's avatar
Rosanne Liu committed
217
        loss.backward()
218
219
220

        # calculate gradient norms
        if grad_norms is not None and loss_type == PPLM_BOW:
Julien Chaumond's avatar
Julien Chaumond committed
221
222
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
223
224
                for index, p_ in enumerate(curr_perturbation)
            ]
Julien Chaumond's avatar
Julien Chaumond committed
225
        else:
226
            grad_norms = [
227
                (torch.norm(p_.grad * window_mask) + SMALL_CONST) for index, p_ in enumerate(curr_perturbation)
228
            ]
Julien Chaumond's avatar
Julien Chaumond committed
229

230
        # normalize gradients
Julien Chaumond's avatar
Julien Chaumond committed
231
        grad = [
232
            -stepsize * (p_.grad * window_mask / grad_norms[index] ** gamma).data.cpu().numpy()
233
234
            for index, p_ in enumerate(curr_perturbation)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
235

236
237
238
239
240
        # accumulate gradient
        grad_accumulator = list(map(add, grad, grad_accumulator))

        # reset gradients, just to make sure
        for p_ in curr_perturbation:
Julien Chaumond's avatar
Julien Chaumond committed
241
242
            p_.grad.data.zero_()

243
        # removing past from the graph
Julien Chaumond's avatar
Julien Chaumond committed
244
        new_past = []
245
246
        for p_ in past:
            new_past.append(p_.detach())
Julien Chaumond's avatar
Julien Chaumond committed
247
248
        past = new_past

249
    # apply the accumulated perturbations to the past
250
    grad_accumulator = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator]
251
    pert_past = list(map(add, past, grad_accumulator))
Julien Chaumond's avatar
Julien Chaumond committed
252

253
    return pert_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
254
255
256


def get_classifier(
257
    name: Optional[str], class_label: Union[str, int], device: str
Julien Chaumond's avatar
Julien Chaumond committed
258
259
260
261
262
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
263
    classifier = ClassificationHead(class_size=params["class_size"], embed_size=params["embed_size"]).to(device)
264
265
    if "url" in params:
        resolved_archive_file = cached_path(params["url"])
266
    elif "path" in params:
267
        resolved_archive_file = params["path"]
268
    else:
269
        raise ValueError("Either url or path have to be specified in the discriminator model parameters")
270
    classifier.load_state_dict(torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
271
272
    classifier.eval()

273
274
275
    if isinstance(class_label, str):
        if class_label in params["class_vocab"]:
            label_id = params["class_vocab"][class_label]
Julien Chaumond's avatar
Julien Chaumond committed
276
277
        else:
            label_id = params["default_class"]
278
            print("class_label {} not in class_vocab".format(class_label))
Julien Chaumond's avatar
Julien Chaumond committed
279
280
281
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

282
283
284
    elif isinstance(class_label, int):
        if class_label in set(params["class_vocab"].values()):
            label_id = class_label
Julien Chaumond's avatar
Julien Chaumond committed
285
286
        else:
            label_id = params["default_class"]
287
            print("class_label {} not in class_vocab".format(class_label))
Julien Chaumond's avatar
Julien Chaumond committed
288
289
290
291
292
293
294
295
296
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


297
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) -> List[List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
298
299
300
301
302
303
304
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
305
            words = f.read().strip().split("\n")
306
        bow_indices.append([tokenizer.encode(word.strip(), add_prefix_space=True) for word in words])
Julien Chaumond's avatar
Julien Chaumond committed
307
308
309
    return bow_indices


310
def build_bows_one_hot_vectors(bow_indices, tokenizer, device="cuda"):
Julien Chaumond's avatar
Julien Chaumond committed
311
312
313
314
315
316
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
317
        single_bow = torch.tensor(single_bow).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
318
        num_words = single_bow.shape[0]
319
        one_hot_bow = torch.zeros(num_words, tokenizer.vocab_size).to(device)
Julien Chaumond's avatar
Julien Chaumond committed
320
321
322
323
324
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


325
def full_text_generation(
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    model,
    tokenizer,
    context=None,
    num_samples=1,
    device="cuda",
    bag_of_words=None,
    discrim=None,
    class_label=None,
    length=100,
    stepsize=0.02,
    temperature=1.0,
    top_k=10,
    sample=False,
    num_iterations=3,
    grad_length=10000,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    gm_scale=0.9,
    kl_scale=0.01,
347
    repetition_penalty=1.0,
348
    **kwargs,
349
):
350
    classifier, class_id = get_classifier(discrim, class_label, device)
Julien Chaumond's avatar
Julien Chaumond committed
351

352
353
    bow_indices = []
    if bag_of_words:
354
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer)
Piero Molino's avatar
Piero Molino committed
355

356
    if bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
357
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
358
        loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
359

360
361
    elif bag_of_words:
        loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
362
363
364
        print("Using PPLM-BoW")

    elif classifier is not None:
365
        loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
366
367
368
        print("Using PPLM-Discrim")

    else:
369
        raise Exception("Specify either a bag of words or a discriminator")
Julien Chaumond's avatar
Julien Chaumond committed
370

371
    unpert_gen_tok_text, _, _ = generate_text_pplm(
372
373
374
375
376
377
378
379
        model=model,
        tokenizer=tokenizer,
        context=context,
        device=device,
        length=length,
        sample=sample,
        perturb=False,
        repetition_penalty=repetition_penalty,
380
    )
381
    if device == "cuda":
382
        torch.cuda.empty_cache()
Julien Chaumond's avatar
Julien Chaumond committed
383

384
385
386
    pert_gen_tok_texts = []
    discrim_losses = []
    losses_in_time = []
Piero Molino's avatar
Piero Molino committed
387

388
    for i in range(num_samples):
389
        pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm(
390
            model=model,
391
            tokenizer=tokenizer,
392
393
394
395
396
            context=context,
            device=device,
            perturb=True,
            bow_indices=bow_indices,
            classifier=classifier,
397
            class_label=class_id,
398
399
400
401
402
            loss_type=loss_type,
            length=length,
            stepsize=stepsize,
            temperature=temperature,
            top_k=top_k,
403
404
405
            sample=sample,
            num_iterations=num_iterations,
            grad_length=grad_length,
406
            horizon_length=horizon_length,
407
            window_length=window_length,
408
409
            decay=decay,
            gamma=gamma,
410
411
            gm_scale=gm_scale,
            kl_scale=kl_scale,
412
            repetition_penalty=repetition_penalty,
413
        )
414
        pert_gen_tok_texts.append(pert_gen_tok_text)
Julien Chaumond's avatar
Julien Chaumond committed
415
        if classifier is not None:
416
417
            discrim_losses.append(discrim_loss.data.cpu().numpy())
        losses_in_time.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
418

419
    if device == "cuda":
420
        torch.cuda.empty_cache()
Julien Chaumond's avatar
Julien Chaumond committed
421

422
    return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
Julien Chaumond's avatar
Julien Chaumond committed
423

424
425

def generate_text_pplm(
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    model,
    tokenizer,
    context=None,
    past=None,
    device="cuda",
    perturb=True,
    bow_indices=None,
    classifier=None,
    class_label=None,
    loss_type=0,
    length=100,
    stepsize=0.02,
    temperature=1.0,
    top_k=10,
    sample=False,
    num_iterations=3,
    grad_length=10000,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    gm_scale=0.9,
    kl_scale=0.01,
449
    repetition_penalty=1.0,
450
):
451
452
453
454
455
456
    output_so_far = None
    if context:
        context_t = torch.tensor(context, device=device, dtype=torch.long)
        while len(context_t.shape) < 2:
            context_t = context_t.unsqueeze(0)
        output_so_far = context_t
Julien Chaumond's avatar
Julien Chaumond committed
457

458
    # collect one hot vectors for bags of words
459
    one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices, tokenizer, device)
460

Julien Chaumond's avatar
Julien Chaumond committed
461
    grad_norms = None
462
    last = None
463
    unpert_discrim_loss = 0
Julien Chaumond's avatar
Julien Chaumond committed
464
    loss_in_time = []
465
    for i in trange(length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
466
        # Get past/probs for current output, except for last word
467
        # Note that GPT takes 2 inputs: past + current_token
Julien Chaumond's avatar
Julien Chaumond committed
468

469
470
471
        # run model forward to obtain unperturbed
        if past is None and output_so_far is not None:
            last = output_so_far[:, -1:]
472
            if output_so_far.shape[1] > 1:
chutaklee's avatar
chutaklee committed
473
                past = model(output_so_far[:, :-1])["past_key_values"]
Piero Molino's avatar
Piero Molino committed
474

chutaklee's avatar
chutaklee committed
475
476
477
478
479
480
        lm_output = model(output_so_far)
        unpert_logits, unpert_past, unpert_all_hidden = (
            lm_output["logits"],
            lm_output["past_key_values"],
            lm_output["hidden_states"],
        )
481
        unpert_last_hidden = unpert_all_hidden[-1]
Piero Molino's avatar
Piero Molino committed
482

483
        # check if we are abowe grad max length
484
485
        if i >= grad_length:
            current_stepsize = stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
486
        else:
487
            current_stepsize = stepsize
Julien Chaumond's avatar
Julien Chaumond committed
488

489
        # modify the past if necessary
490
        if not perturb or num_iterations == 0:
491
            pert_past = past
Julien Chaumond's avatar
Julien Chaumond committed
492
493

        else:
494
            accumulated_hidden = unpert_last_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
495
496
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

497
498
499
500
501
502
503
504
505
506
            if past is not None:
                pert_past, _, grad_norms, loss_this_iter = perturb_past(
                    past,
                    model,
                    last,
                    unpert_past=unpert_past,
                    unpert_logits=unpert_logits,
                    accumulated_hidden=accumulated_hidden,
                    grad_norms=grad_norms,
                    stepsize=current_stepsize,
507
                    one_hot_bows_vectors=one_hot_bows_vectors,
508
                    classifier=classifier,
509
                    class_label=class_label,
510
511
512
                    loss_type=loss_type,
                    num_iterations=num_iterations,
                    horizon_length=horizon_length,
513
                    window_length=window_length,
514
515
                    decay=decay,
                    gamma=gamma,
516
517
                    kl_scale=kl_scale,
                    device=device,
518
519
520
521
                )
                loss_in_time.append(loss_this_iter)
            else:
                pert_past = past
Piero Molino's avatar
Piero Molino committed
522

chutaklee's avatar
chutaklee committed
523
524
525
526
527
        lm_output = model(last, past_key_values=pert_past)
        pert_logits, past = (
            lm_output["logits"],
            lm_output["past_key_values"],
        )
528
        pert_logits = pert_logits[:, -1, :] / temperature  # + SMALL_CONST
529
530
531
532
533
534
535

        for token_idx in set(output_so_far[0].tolist()):
            if pert_logits[0, token_idx] < 0:
                pert_logits[0, token_idx] *= repetition_penalty
            else:
                pert_logits[0, token_idx] /= repetition_penalty

536
        pert_probs = nn.functional.softmax(pert_logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
537
538

        if classifier is not None:
539
            ce_loss = nn.CrossEntropyLoss()
540
            prediction = classifier(torch.mean(unpert_last_hidden, dim=1))
541
            label = torch.tensor([class_label], device=device, dtype=torch.long)
542
            unpert_discrim_loss = ce_loss(prediction, label)
543
            print("unperturbed discrim loss", unpert_discrim_loss.data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
544
        else:
545
            unpert_discrim_loss = 0
Piero Molino's avatar
Piero Molino committed
546
547

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
548
        if perturb:
549
            unpert_probs = nn.functional.softmax(unpert_logits[:, -1, :], dim=-1)
Piero Molino's avatar
Piero Molino committed
550

551
            pert_probs = (pert_probs**gm_scale) * (unpert_probs ** (1 - gm_scale))  # + SMALL_CONST
552
            pert_probs = top_k_filter(pert_probs, k=top_k, probs=True)  # + SMALL_CONST
Julien Chaumond's avatar
Julien Chaumond committed
553

554
555
556
            # rescale
            if torch.sum(pert_probs) <= 1:
                pert_probs = pert_probs / torch.sum(pert_probs)
Julien Chaumond's avatar
Julien Chaumond committed
557
558

        else:
559
            pert_logits = top_k_filter(pert_logits, k=top_k)  # + SMALL_CONST
560
            pert_probs = nn.functional.softmax(pert_logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
561

562
        # sample or greedy
Julien Chaumond's avatar
Julien Chaumond committed
563
        if sample:
564
565
            last = torch.multinomial(pert_probs, num_samples=1)

Julien Chaumond's avatar
Julien Chaumond committed
566
        else:
567
568
569
            _, last = torch.topk(pert_probs, k=1, dim=-1)

        # update context/output_so_far appending the new token
570
        output_so_far = last if output_so_far is None else torch.cat((output_so_far, last), dim=1)
571

572
        print(tokenizer.decode(output_so_far.tolist()[0]))
573
574

    return output_so_far, unpert_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
575
576


577
578
def set_generic_model_params(discrim_weights, discrim_meta):
    if discrim_weights is None:
579
        raise ValueError("When using a generic discriminator, discrim_weights need to be specified")
580
    if discrim_meta is None:
581
        raise ValueError("When using a generic discriminator, discrim_meta need to be specified")
582

583
    with open(discrim_meta, "r") as discrim_meta_file:
584
        meta = json.load(discrim_meta_file)
585
586
    meta["path"] = discrim_weights
    DISCRIMINATOR_MODELS_PARAMS["generic"] = meta
587
588


589
def run_pplm_example(
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    pretrained_model="gpt2-medium",
    cond_text="",
    uncond=False,
    num_samples=1,
    bag_of_words=None,
    discrim=None,
    discrim_weights=None,
    discrim_meta=None,
    class_label=-1,
    length=100,
    stepsize=0.02,
    temperature=1.0,
    top_k=10,
    sample=False,
    num_iterations=3,
    grad_length=10000,
    horizon_length=1,
    window_length=0,
    decay=False,
    gamma=1.5,
    gm_scale=0.9,
    kl_scale=0.01,
    seed=0,
    no_cuda=False,
    colorama=False,
615
    repetition_penalty=1.0,
616
):
617
    # set Random seed
618
619
    torch.manual_seed(seed)
    np.random.seed(seed)
Julien Chaumond's avatar
Julien Chaumond committed
620

621
    # set the device
622
623
    device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"

624
    if discrim == "generic":
625
        set_generic_model_params(discrim_weights, discrim_meta)
Julien Chaumond's avatar
Julien Chaumond committed
626

627
    if discrim is not None:
628
        pretrained_model = DISCRIMINATOR_MODELS_PARAMS[discrim]["pretrained_model"]
629
        print("discrim = {}, pretrained_model set to discriminator's = {}".format(discrim, pretrained_model))
630

631
    # load pretrained model
632
    model = GPT2LMHeadModel.from_pretrained(pretrained_model, output_hidden_states=True)
Julien Chaumond's avatar
Julien Chaumond committed
633
634
635
    model.to(device)
    model.eval()

636
637
638
    # load tokenizer
    tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)

Piero Molino's avatar
Piero Molino committed
639
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
640
641
642
    for param in model.parameters():
        param.requires_grad = False

643
    # figure out conditioning text
644
    if uncond:
645
        tokenized_cond_text = tokenizer.encode([tokenizer.bos_token])
Julien Chaumond's avatar
Julien Chaumond committed
646
    else:
647
        raw_text = cond_text
Julien Chaumond's avatar
Julien Chaumond committed
648
        while not raw_text:
649
            print("Did you forget to add `--cond_text`? ")
Julien Chaumond's avatar
Julien Chaumond committed
650
            raw_text = input("Model prompt >>> ")
651
        tokenized_cond_text = tokenizer.encode(tokenizer.bos_token + raw_text)
Piero Molino's avatar
Piero Molino committed
652

653
    print("= Prefix of sentence =")
654
    print(tokenizer.decode(tokenized_cond_text))
655
    print()
Piero Molino's avatar
Piero Molino committed
656

657
    # generate unperturbed and perturbed texts
Piero Molino's avatar
Piero Molino committed
658

659
660
661
    # full_text_generation returns:
    # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
    unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        model=model,
        tokenizer=tokenizer,
        context=tokenized_cond_text,
        device=device,
        num_samples=num_samples,
        bag_of_words=bag_of_words,
        discrim=discrim,
        class_label=class_label,
        length=length,
        stepsize=stepsize,
        temperature=temperature,
        top_k=top_k,
        sample=sample,
        num_iterations=num_iterations,
        grad_length=grad_length,
        horizon_length=horizon_length,
        window_length=window_length,
        decay=decay,
        gamma=gamma,
        gm_scale=gm_scale,
        kl_scale=kl_scale,
683
        repetition_penalty=repetition_penalty,
684
685
686
    )

    # untokenize unperturbed text
687
    unpert_gen_text = tokenizer.decode(unpert_gen_tok_text.tolist()[0])
Piero Molino's avatar
Piero Molino committed
688

689
690
691
692
    print("=" * 80)
    print("= Unperturbed generated text =")
    print(unpert_gen_text)
    print()
Piero Molino's avatar
Piero Molino committed
693

694
695
    generated_texts = []

696
    bow_word_ids = set()
697
    if bag_of_words and colorama:
698
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer)
699
700
701
702
703
        for single_bow_list in bow_indices:
            # filtering all words in the list composed of more than 1 token
            filtered = list(filter(lambda x: len(x) <= 1, single_bow_list))
            # w[0] because we are sure w has only 1 item because previous fitler
            bow_word_ids.update(w[0] for w in filtered)
704
705
706
707
708

    # iterate through the perturbed texts
    for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
        try:
            # untokenize unperturbed text
709
            if colorama:
Piero Molino's avatar
Piero Molino committed
710
711
                import colorama

712
                pert_gen_text = ""
713
                for word_id in pert_gen_tok_text.tolist()[0]:
714
                    if word_id in bow_word_ids:
715
                        pert_gen_text += "{}{}{}".format(
Lysandre's avatar
Lysandre committed
716
717
718
                            colorama.Fore.RED,
                            tokenizer.decode([word_id]),
                            colorama.Style.RESET_ALL,
719
                        )
Piero Molino's avatar
Piero Molino committed
720
                    else:
721
                        pert_gen_text += tokenizer.decode([word_id])
Piero Molino's avatar
Piero Molino committed
722
            else:
723
                pert_gen_text = tokenizer.decode(pert_gen_tok_text.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
724

725
726
727
            print("= Perturbed generated text {} =".format(i + 1))
            print(pert_gen_text)
            print()
728
729
        except Exception as exc:
            print("Ignoring error while generating perturbed text:", exc)
Julien Chaumond's avatar
Julien Chaumond committed
730

731
        # keep the prefix, perturbed seq, original seq for each index
732
        generated_texts.append((tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text))
Julien Chaumond's avatar
Julien Chaumond committed
733

Piero Molino's avatar
Piero Molino committed
734
    return
Julien Chaumond's avatar
Julien Chaumond committed
735
736


737
if __name__ == "__main__":
738
739
740
741
742
743
744
745
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--pretrained_model",
        "-M",
        type=str,
        default="gpt2-medium",
        help="pretrained model name or path to local checkpoint",
    )
746
747
    parser.add_argument("--cond_text", type=str, default="The lake", help="Prefix texts to condition on")
    parser.add_argument("--uncond", action="store_true", help="Generate from end-of-text as prefix")
748
    parser.add_argument(
Lysandre's avatar
Lysandre committed
749
750
751
752
        "--num_samples",
        type=int,
        default=1,
        help="Number of samples to generate from the modified latents",
753
    )
754
755
756
757
758
    parser.add_argument(
        "--bag_of_words",
        "-B",
        type=str,
        default=None,
759
760
761
762
763
        help=(
            "Bags of words used for PPLM-BoW. "
            "Either a BOW id (see list in code) or a filepath. "
            "Multiple BoWs separated by ;"
        ),
764
765
766
767
768
769
770
771
772
773
    )
    parser.add_argument(
        "--discrim",
        "-D",
        type=str,
        default=None,
        choices=("clickbait", "sentiment", "toxicity", "generic"),
        help="Discriminator to use",
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
774
775
776
777
        "--discrim_weights",
        type=str,
        default=None,
        help="Weights for the generic discriminator",
778
779
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
780
781
782
783
        "--discrim_meta",
        type=str,
        default=None,
        help="Meta information for the generic discriminator",
784
785
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
786
787
788
789
        "--class_label",
        type=int,
        default=-1,
        help="Class label used for the discriminator",
790
791
    )
    parser.add_argument("--length", type=int, default=100)
792
    parser.add_argument("--stepsize", type=float, default=0.02)
793
794
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
795
    parser.add_argument("--sample", action="store_true", help="Generate from end-of-text as prefix")
796
797
798
    parser.add_argument("--num_iterations", type=int, default=3)
    parser.add_argument("--grad_length", type=int, default=10000)
    parser.add_argument(
799
        "--window_length",
800
        type=int,
801
        default=0,
802
        help="Length of past which is being optimized; 0 corresponds to infinite window length",
803
804
    )
    parser.add_argument(
Lysandre's avatar
Lysandre committed
805
806
807
808
        "--horizon_length",
        type=int,
        default=1,
        help="Length of future to optimize over",
809
    )
810
    parser.add_argument("--decay", action="store_true", help="whether to decay or not")
811
    parser.add_argument("--gamma", type=float, default=1.5)
812
813
814
815
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--no_cuda", action="store_true", help="no cuda")
816
    parser.add_argument("--colorama", action="store_true", help="colors keywords")
817
    parser.add_argument(
Lysandre's avatar
Lysandre committed
818
819
820
821
        "--repetition_penalty",
        type=float,
        default=1.0,
        help="Penalize repetition. More than 1.0 -> less repetition",
822
    )
823
824
825

    args = parser.parse_args()
    run_pplm_example(**vars(args))