run_mae.py 15.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode

import transformers
from transformers import (
    HfArgumentParser,
    Trainer,
    TrainingArguments,
32
    ViTImageProcessor,
33
34
35
36
    ViTMAEConfig,
    ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
37
from transformers.utils import check_min_version, send_example_telemetry
38
39
40
41
42
43
44
45
from transformers.utils.versions import require_version


""" Pre-training a 馃 ViT model as an MAE (masked autoencoder), as proposed in https://arxiv.org/abs/2111.06377."""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
46
check_min_version("4.27.0.dev0")
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    dataset_name: Optional[str] = field(
        default="cifar10", metadata={"help": "Name of a dataset from the datasets package"}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    image_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of the images in the files."}
    )
    train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
    validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
80
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
81
82
83
84
85
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
86
87
88
89
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        },
    )

    def __post_init__(self):
        data_files = dict()
        if self.train_dir is not None:
            data_files["train"] = self.train_dir
        if self.validation_dir is not None:
            data_files["val"] = self.validation_dir
        self.data_files = data_files if data_files else None


@dataclass
class ModelArguments:
    """
105
    Arguments pertaining to which model/config/image processor we are going to pre-train.
106
107
108
109
110
    """

    model_name_or_path: str = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
            "help": (
                "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
            )
114
115
116
117
118
119
120
121
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"}
    )
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
125
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
126
127
128
129
130
131
132
133
134
        },
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
135
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
136
137
138
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
139
            "help": (
140
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
                "with private models)."
            )
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        },
    )
    mask_ratio: float = field(
        default=0.75, metadata={"help": "The ratio of the number of masked tokens in the input sequence."}
    )
    norm_pix_loss: bool = field(
        default=True, metadata={"help": "Whether or not to train with normalized pixel values as target."}
    )


@dataclass
class CustomTrainingArguments(TrainingArguments):
    base_learning_rate: float = field(
        default=1e-3, metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."}
    )


def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    return {"pixel_values": pixel_values}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

178
179
180
181
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_mae", model_args, data_args)

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset.
    ds = load_dataset(
        data_args.dataset_name,
        data_args.dataset_config_name,
        data_files=data_args.data_files,
        cache_dir=model_args.cache_dir,
223
        use_auth_token=True if model_args.use_auth_token else None,
224
225
226
227
228
229
230
231
232
    )

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in ds.keys() else data_args.train_val_split
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
        split = ds["train"].train_test_split(data_args.train_val_split)
        ds["train"] = split["train"]
        ds["validation"] = split["test"]

233
    # Load pretrained model and image processor
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs)
    elif model_args.model_name_or_path:
        config = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
    else:
        config = ViTMAEConfig()
        logger.warning("You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)
            logger.info(f"New config: {config}")

    # adapt config
    config.update(
        {
            "mask_ratio": model_args.mask_ratio,
            "norm_pix_loss": model_args.norm_pix_loss,
        }
    )

263
264
265
    # create image processor
    if model_args.image_processor_name:
        image_processor = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **config_kwargs)
266
    elif model_args.model_name_or_path:
267
        image_processor = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **config_kwargs)
268
    else:
269
        image_processor = ViTImageProcessor()
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    # create model
    if model_args.model_name_or_path:
        model = ViTMAEForPreTraining.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model from scratch")
        model = ViTMAEForPreTraining(config)

    if training_args.do_train:
        column_names = ds["train"].column_names
    else:
        column_names = ds["validation"].column_names

    if data_args.image_column_name is not None:
        image_column_name = data_args.image_column_name
    elif "image" in column_names:
        image_column_name = "image"
    elif "img" in column_names:
        image_column_name = "img"
    else:
        image_column_name = column_names[0]

    # transformations as done in original MAE paper
    # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
301
302
    if "shortest_edge" in image_processor.size:
        size = image_processor.size["shortest_edge"]
amyeroberts's avatar
amyeroberts committed
303
    else:
304
        size = (image_processor.size["height"], image_processor.size["width"])
305
306
307
    transforms = Compose(
        [
            Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
amyeroberts's avatar
amyeroberts committed
308
            RandomResizedCrop(size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC),
309
310
            RandomHorizontalFlip(),
            ToTensor(),
311
            Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        ]
    )

    def preprocess_images(examples):
        """Preprocess a batch of images by applying transforms."""

        examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]]
        return examples

    if training_args.do_train:
        if "train" not in ds:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
        # Set the training transforms
        ds["train"].set_transform(preprocess_images)

    if training_args.do_eval:
        if "validation" not in ds:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            ds["validation"] = (
                ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
            )
        # Set the validation transforms
        ds["validation"].set_transform(preprocess_images)

    # Compute absolute learning rate
    total_train_batch_size = (
        training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
    )
    if training_args.base_learning_rate is not None:
        training_args.learning_rate = training_args.base_learning_rate * total_train_batch_size / 256

    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=ds["train"] if training_args.do_train else None,
        eval_dataset=ds["validation"] if training_args.do_eval else None,
352
        tokenizer=image_processor,
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        data_collator=collate_fn,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "tasks": "masked-auto-encoding",
        "dataset": data_args.dataset_name,
        "tags": ["masked-auto-encoding"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


387
388
389
390
391
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


392
393
if __name__ == "__main__":
    main()