test_feature_extraction_detr.py 14.8 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import pathlib
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision, slow
24
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
25

Yih-Dar's avatar
Yih-Dar committed
26
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import DetrFeatureExtractor


class DetrFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
47
48
49
        size=None,
        do_rescale=True,
        rescale_factor=1 / 255,
NielsRogge's avatar
NielsRogge committed
50
51
52
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
53
        do_pad=True,
NielsRogge's avatar
NielsRogge committed
54
    ):
55
56
        # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
        size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
NielsRogge's avatar
NielsRogge committed
57
58
59
60
61
62
63
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
64
65
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
NielsRogge's avatar
NielsRogge committed
66
67
68
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
69
        self.do_pad = do_pad
NielsRogge's avatar
NielsRogge committed
70
71
72
73
74

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
75
76
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
NielsRogge's avatar
NielsRogge committed
77
78
79
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
80
            "do_pad": self.do_pad,
NielsRogge's avatar
NielsRogge committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
        This function computes the expected height and width when providing images to DetrFeatureExtractor,
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
95
96
                expected_height = int(self.size["shortest_edge"] * h / w)
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
97
            elif w > h:
98
99
                expected_height = self.size["shortest_edge"]
                expected_width = int(self.size["shortest_edge"] * w / h)
NielsRogge's avatar
NielsRogge committed
100
            else:
101
102
                expected_height = self.size["shortest_edge"]
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width


@require_torch
@require_vision
class DetrFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = DetrFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = DetrFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
133
134
        self.assertTrue(hasattr(feature_extractor, "do_rescale"))
        self.assertTrue(hasattr(feature_extractor, "rescale_factor"))
NielsRogge's avatar
NielsRogge committed
135
136
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
137
        self.assertTrue(hasattr(feature_extractor, "do_pad"))
NielsRogge's avatar
NielsRogge committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)

        self.assertEqual(
            encoded_images.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)

        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def test_equivalence_pad_and_create_pixel_mask(self):
        # Initialize feature_extractors
        feature_extractor_1 = self.feature_extraction_class(**self.feat_extract_dict)
243
        feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False, do_rescale=False)
NielsRogge's avatar
NielsRogge committed
244
245
246
247
248
249
250
251
252
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test whether the method "pad_and_return_pixel_mask" and calling the feature extractor return the same tensors
        encoded_images_with_method = feature_extractor_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt")
        encoded_images = feature_extractor_2(image_inputs, return_tensors="pt")

253
254
255
256
257
258
        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
        )
        self.assertTrue(
            torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4)
        )
NielsRogge's avatar
NielsRogge committed
259
260
261
262
263
264
265
266
267
268
269

    @slow
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        # encode them
270
        feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50")
NielsRogge's avatar
NielsRogge committed
271
272
273
274
275
276
277
        encoding = feature_extractor(images=image, annotations=target, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
278
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
279
280
281

        # verify area
        expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
282
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
283
284
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
285
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
286
        expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
287
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
288
289
        # verify image_id
        expected_image_id = torch.tensor([39769])
290
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
291
292
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
293
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
294
295
        # verify class_labels
        expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
296
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
297
298
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
299
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
300
301
        # verify size
        expected_size = torch.tensor([800, 1066])
302
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
NielsRogge's avatar
NielsRogge committed
303
304
305
306
307
308
309
310
311
312
313
314
315

    @slow
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        # encode them
316
        feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
NielsRogge's avatar
NielsRogge committed
317
318
319
320
321
322
323
        encoding = feature_extractor(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
324
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
325
326
327

        # verify area
        expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
328
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
329
330
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
331
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
332
        expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
333
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
334
335
        # verify image_id
        expected_image_id = torch.tensor([39769])
336
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
337
338
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
339
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
340
341
        # verify class_labels
        expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
342
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
343
        # verify masks
344
        expected_masks_sum = 822873
345
        self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
NielsRogge's avatar
NielsRogge committed
346
347
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
348
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
349
350
        # verify size
        expected_size = torch.tensor([800, 1066])
351
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))