run_multiple_choice.py 7.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
erenup's avatar
erenup committed
16
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
17
18
19
20


import logging
import os
Julien Chaumond's avatar
Julien Chaumond committed
21
22
from dataclasses import dataclass, field
from typing import Dict, Optional
23
24
25

import numpy as np

26
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
27
28
29
30
31
32
33
34
    AutoConfig,
    AutoModelForMultipleChoice,
    AutoTokenizer,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
35
)
Julien Chaumond's avatar
Julien Chaumond committed
36
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
Aymeric Augustin's avatar
Aymeric Augustin committed
37

38
39
40
41
42
43
44
45

logger = logging.getLogger(__name__)


def simple_accuracy(preds, labels):
    return (preds == labels).mean()


Julien Chaumond's avatar
Julien Chaumond committed
46
47
48
49
50
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
51

Julien Chaumond's avatar
Julien Chaumond committed
52
53
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
54
    )
Julien Chaumond's avatar
Julien Chaumond committed
55
56
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
57
    )
Julien Chaumond's avatar
Julien Chaumond committed
58
59
60
61
62
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
63
    )
64
65


Julien Chaumond's avatar
Julien Chaumond committed
66
67
68
69
70
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
71

Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
    task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())})
    data_dir: str = field(metadata={"help": "Should contain the data files for the task."})
    max_seq_length: int = field(
75
        default=128,
Julien Chaumond's avatar
Julien Chaumond committed
76
77
78
79
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
80
    )
Julien Chaumond's avatar
Julien Chaumond committed
81
82
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
83
84
85
    )


Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
90
91
92
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
93

94
    if (
Julien Chaumond's avatar
Julien Chaumond committed
95
96
97
98
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
99
100
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
101
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
102
        )
103
104

    # Setup logging
105
106
107
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
108
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
109
110
111
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
112
113
114
115
116
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
117
    )
Julien Chaumond's avatar
Julien Chaumond committed
118
    logger.info("Training/evaluation parameters %s", training_args)
119
120

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
121
    set_seed(training_args.seed)
122

Julien Chaumond's avatar
Julien Chaumond committed
123
124
125
126
127
128
    try:
        processor = processors[data_args.task_name]()
        label_list = processor.get_labels()
        num_labels = len(label_list)
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))
129
130

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
131
132
133
134
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
135

Julien Chaumond's avatar
Julien Chaumond committed
136
137
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
138
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
139
140
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
141
    )
Julien Chaumond's avatar
Julien Chaumond committed
142
143
144
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
145
    )
Julien Chaumond's avatar
Julien Chaumond committed
146
147
148
    model = AutoModelForMultipleChoice.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
149
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        cache_dir=model_args.cache_dir,
    )

    # Get datasets
    train_dataset = (
        MultipleChoiceDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            task=data_args.task_name,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
            local_rank=training_args.local_rank,
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        MultipleChoiceDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            task=data_args.task_name,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
            local_rank=training_args.local_rank,
        )
        if training_args.do_eval
        else None
179
    )
180

Julien Chaumond's avatar
Julien Chaumond committed
181
182
183
    def compute_metrics(p: EvalPrediction) -> Dict:
        preds = np.argmax(p.predictions, axis=1)
        return {"acc": simple_accuracy(preds, p.label_ids)}
184

Julien Chaumond's avatar
Julien Chaumond committed
185
186
187
188
189
190
191
192
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )
193
194

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
195
196
197
198
    if training_args.do_train:
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
199
200
201

    # Evaluation
    results = {}
Julien Chaumond's avatar
Julien Chaumond committed
202
203
204
205
206
207
208
209
210
211
212
    if training_args.do_eval and training_args.local_rank in [-1, 0]:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()

        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))
213

erenup's avatar
erenup committed
214
            results.update(result)
Julien Chaumond's avatar
Julien Chaumond committed
215

216
217
218
219
220
    return results


if __name__ == "__main__":
    main()