test_pipelines_fill_mask.py 8.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import unittest

from transformers import pipeline
from transformers.testing_utils import require_tf, require_torch, slow

from .test_pipelines_common import MonoInputPipelineCommonMixin


EXPECTED_FILL_MASK_RESULT = [
    [
        {"sequence": "<s>My name is John</s>", "score": 0.00782308354973793, "token": 610, "token_str": "臓John"},
        {"sequence": "<s>My name is Chris</s>", "score": 0.007475061342120171, "token": 1573, "token_str": "臓Chris"},
    ],
    [
        {"sequence": "<s>The largest city in France is Paris</s>", "score": 0.3185044229030609, "token": 2201},
        {"sequence": "<s>The largest city in France is Lyon</s>", "score": 0.21112334728240967, "token": 12790},
    ],
]

EXPECTED_FILL_MASK_TARGET_RESULT = [
    [
        {
            "sequence": "<s>My name is Patrick</s>",
            "score": 0.004992353264242411,
            "token": 3499,
            "token_str": "臓Patrick",
        },
        {
            "sequence": "<s>My name is Clara</s>",
            "score": 0.00019297805556561798,
            "token": 13606,
            "token_str": "臓Clara",
        },
    ]
]


class FillMaskPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
    pipeline_task = "fill-mask"
40
    pipeline_loading_kwargs = {"top_k": 2}
41
42
43
44
45
46
47
48
49
50
51
52
53
    small_models = ["sshleifer/tiny-distilroberta-base"]  # Models tested without the @slow decorator
    large_models = ["distilroberta-base"]  # Models tested with the @slow decorator
    mandatory_keys = {"sequence", "score", "token"}
    valid_inputs = [
        "My name is <mask>",
        "The largest city in France is <mask>",
    ]
    invalid_inputs = [
        "This is <mask> <mask>"  # More than 1 mask_token in the input is not supported
        "This is"  # No mask_token is not supported
    ]
    expected_check_keys = ["sequence"]

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    @require_torch
    def test_torch_fill_mask(self):
        valid_inputs = "My name is <mask>"
        nlp = pipeline(task="fill-mask", model=self.small_models[0])
        outputs = nlp(valid_inputs)
        self.assertIsInstance(outputs, list)

        # This passes
        outputs = nlp(valid_inputs, targets=[" Patrick", " Clara"])
        self.assertIsInstance(outputs, list)

        # This used to fail with `cannot mix args and kwargs`
        outputs = nlp(valid_inputs, something=False)
        self.assertIsInstance(outputs, list)

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    @require_torch
    def test_torch_fill_mask_with_targets(self):
        valid_inputs = ["My name is <mask>"]
        valid_targets = [[" Teven", " Patrick", " Clara"], [" Sam"]]
        invalid_targets = [[], [""], ""]
        for model_name in self.small_models:
            nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="pt")
            for targets in valid_targets:
                outputs = nlp(valid_inputs, targets=targets)
                self.assertIsInstance(outputs, list)
                self.assertEqual(len(outputs), len(targets))
            for targets in invalid_targets:
                self.assertRaises(ValueError, nlp, valid_inputs, targets=targets)

    @require_tf
    def test_tf_fill_mask_with_targets(self):
        valid_inputs = ["My name is <mask>"]
        valid_targets = [[" Teven", " Patrick", " Clara"], [" Sam"]]
        invalid_targets = [[], [""], ""]
        for model_name in self.small_models:
            nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf")
            for targets in valid_targets:
                outputs = nlp(valid_inputs, targets=targets)
                self.assertIsInstance(outputs, list)
                self.assertEqual(len(outputs), len(targets))
            for targets in invalid_targets:
                self.assertRaises(ValueError, nlp, valid_inputs, targets=targets)

    @require_torch
    @slow
    def test_torch_fill_mask_results(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        valid_targets = [" Patrick", " Clara"]
        for model_name in self.large_models:
            nlp = pipeline(
                task="fill-mask",
                model=model_name,
                tokenizer=model_name,
                framework="pt",
112
                top_k=2,
113
            )
Lysandre Debut's avatar
Lysandre Debut committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

            mono_result = nlp(valid_inputs[0], targets=valid_targets)
            self.assertIsInstance(mono_result, list)
            self.assertIsInstance(mono_result[0], dict)

            for mandatory_key in mandatory_keys:
                self.assertIn(mandatory_key, mono_result[0])

            multi_result = [nlp(valid_input) for valid_input in valid_inputs]
            self.assertIsInstance(multi_result, list)
            self.assertIsInstance(multi_result[0], (dict, list))

            for result, expected in zip(multi_result, EXPECTED_FILL_MASK_RESULT):
                self.assertEqual(set([o["sequence"] for o in result]), set([o["sequence"] for o in result]))

            if isinstance(multi_result[0], list):
                multi_result = multi_result[0]

            for result in multi_result:
                for key in mandatory_keys:
                    self.assertIn(key, result)

            self.assertRaises(Exception, nlp, [None])

            valid_inputs = valid_inputs[:1]
            mono_result = nlp(valid_inputs[0], targets=valid_targets)
            self.assertIsInstance(mono_result, list)
            self.assertIsInstance(mono_result[0], dict)

            for mandatory_key in mandatory_keys:
                self.assertIn(mandatory_key, mono_result[0])

            multi_result = [nlp(valid_input) for valid_input in valid_inputs]
            self.assertIsInstance(multi_result, list)
            self.assertIsInstance(multi_result[0], (dict, list))

            for result, expected in zip(multi_result, EXPECTED_FILL_MASK_TARGET_RESULT):
                self.assertEqual(set([o["sequence"] for o in result]), set([o["sequence"] for o in result]))

            if isinstance(multi_result[0], list):
                multi_result = multi_result[0]

            for result in multi_result:
                for key in mandatory_keys:
                    self.assertIn(key, result)

            self.assertRaises(Exception, nlp, [None])
161
162
163
164
165
166
167
168
169
170
171
172

    @require_tf
    @slow
    def test_tf_fill_mask_results(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        valid_targets = [" Patrick", " Clara"]
        for model_name in self.large_models:
            nlp = pipeline(task="fill-mask", model=model_name, tokenizer=model_name, framework="tf", topk=2)
Lysandre Debut's avatar
Lysandre Debut committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

            mono_result = nlp(valid_inputs[0], targets=valid_targets)
            self.assertIsInstance(mono_result, list)
            self.assertIsInstance(mono_result[0], dict)

            for mandatory_key in mandatory_keys:
                self.assertIn(mandatory_key, mono_result[0])

            multi_result = [nlp(valid_input) for valid_input in valid_inputs]
            self.assertIsInstance(multi_result, list)
            self.assertIsInstance(multi_result[0], (dict, list))

            for result, expected in zip(multi_result, EXPECTED_FILL_MASK_RESULT):
                self.assertEqual(set([o["sequence"] for o in result]), set([o["sequence"] for o in result]))

            if isinstance(multi_result[0], list):
                multi_result = multi_result[0]

            for result in multi_result:
                for key in mandatory_keys:
                    self.assertIn(key, result)

            self.assertRaises(Exception, nlp, [None])

            valid_inputs = valid_inputs[:1]
            mono_result = nlp(valid_inputs[0], targets=valid_targets)
            self.assertIsInstance(mono_result, list)
            self.assertIsInstance(mono_result[0], dict)

            for mandatory_key in mandatory_keys:
                self.assertIn(mandatory_key, mono_result[0])

            multi_result = [nlp(valid_input) for valid_input in valid_inputs]
            self.assertIsInstance(multi_result, list)
            self.assertIsInstance(multi_result[0], (dict, list))

            for result, expected in zip(multi_result, EXPECTED_FILL_MASK_TARGET_RESULT):
                self.assertEqual(set([o["sequence"] for o in result]), set([o["sequence"] for o in result]))

            if isinstance(multi_result[0], list):
                multi_result = multi_result[0]

            for result in multi_result:
                for key in mandatory_keys:
                    self.assertIn(key, result)

            self.assertRaises(Exception, nlp, [None])