test_optimization.py 6.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20

21
from transformers import is_torch_available
thomwolf's avatar
thomwolf committed
22

Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
25
from .utils import require_torch


26
if is_torch_available():
thomwolf's avatar
thomwolf committed
27
28
    import torch

29
30
31
32
33
34
35
36
    from transformers import (
        AdamW,
        get_constant_schedule,
        get_constant_schedule_with_warmup,
        get_cosine_schedule_with_warmup,
        get_cosine_with_hard_restarts_schedule_with_warmup,
        get_linear_schedule_with_warmup,
    )
thomwolf's avatar
thomwolf committed
37

lukovnikov's avatar
lukovnikov committed
38

thomwolf's avatar
thomwolf committed
39
40
41
42
43
44
45
def unwrap_schedule(scheduler, num_steps=10):
    lrs = []
    for _ in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
    return lrs

46

47
48
49
50
51
52
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
    lrs = []
    for step in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
        if step == num_steps // 2:
53
            with tempfile.TemporaryDirectory() as tmpdirname:
54
                file_name = os.path.join(tmpdirname, "schedule.bin")
55
56
57
58
59
60
                torch.save(scheduler.state_dict(), file_name)

                state_dict = torch.load(file_name)
                scheduler.load_state_dict(state_dict)
    return lrs

61

62
@require_torch
63
64
65
66
67
68
class OptimizationTest(unittest.TestCase):
    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
69
    def test_adam_w(self):
70
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
71
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
72
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
73
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
74
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
75
        for _ in range(100):
thomwolf's avatar
thomwolf committed
76
            loss = criterion(w, target)
77
78
            loss.backward()
            optimizer.step()
79
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
thomwolf's avatar
thomwolf committed
80
            w.grad.zero_()
81
82
83
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)


84
@require_torch
lukovnikov's avatar
lukovnikov committed
85
class ScheduleInitTest(unittest.TestCase):
thomwolf's avatar
thomwolf committed
86
    m = torch.nn.Linear(50, 50) if is_torch_available() else None
87
    optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
thomwolf's avatar
thomwolf committed
88
89
90
91
92
93
94
95
    num_steps = 10

    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

    def test_constant_scheduler(self):
96
        scheduler = get_constant_schedule(self.optimizer)
thomwolf's avatar
thomwolf committed
97
        lrs = unwrap_schedule(scheduler, self.num_steps)
98
        expected_learning_rates = [10.0] * self.num_steps
thomwolf's avatar
thomwolf committed
99
100
101
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

102
        scheduler = get_constant_schedule(self.optimizer)
103
104
105
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
106
    def test_warmup_constant_scheduler(self):
107
        scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
thomwolf's avatar
thomwolf committed
108
109
110
111
112
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

113
        scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
114
115
116
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
117
    def test_warmup_linear_scheduler(self):
118
        scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
thomwolf's avatar
thomwolf committed
119
120
121
122
123
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

124
        scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
125
126
127
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
128
    def test_warmup_cosine_scheduler(self):
129
        scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
thomwolf's avatar
thomwolf committed
130
131
132
133
134
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)

135
        scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
136
137
138
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])

thomwolf's avatar
thomwolf committed
139
    def test_warmup_cosine_hard_restart_scheduler(self):
140
141
142
        scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
            self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10
        )
thomwolf's avatar
thomwolf committed
143
144
145
146
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
lukovnikov's avatar
lukovnikov committed
147

148
149
150
        scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
            self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10
        )
151
152
        lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
        self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])