test_modeling_tf_transfo_xl.py 7.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import random
18
import unittest
Aymeric Augustin's avatar
Aymeric Augustin committed
19
20

from transformers import TransfoXLConfig, is_tf_available
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
24
from .utils import CACHE_DIR, require_tf, slow
25
26
27
28


if is_tf_available():
    import tensorflow as tf
29
30
31
32
33
    from transformers.modeling_tf_transfo_xl import (
        TFTransfoXLModel,
        TFTransfoXLLMHeadModel,
        TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
34
35


36
@require_tf
37
class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase):
38
39
40
41
42
43
44

    all_model_classes = (TFTransfoXLModel, TFTransfoXLLMHeadModel) if is_tf_available() else ()
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False

    class TFTransfoXLModelTester(object):
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            mem_len=30,
            clamp_len=15,
            is_training=True,
            use_labels=True,
            vocab_size=99,
            cutoffs=[10, 50, 80],
            hidden_size=32,
            d_embed=32,
            num_attention_heads=4,
            d_head=8,
            d_inner=128,
            div_val=2,
            num_hidden_layers=5,
            scope=None,
            seed=1,
        ):
66
67
68
69
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
thomwolf's avatar
thomwolf committed
70
            self.key_length = seq_length + mem_len
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
            self.clamp_len = clamp_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.hidden_size = hidden_size
            self.d_embed = d_embed
            self.num_attention_heads = num_attention_heads
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.num_hidden_layers = num_hidden_layers
            self.scope = scope
            self.seed = seed

        def prepare_config_and_inputs(self):
            input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            lm_labels = None
            if self.use_labels:
                lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            config = TransfoXLConfig(
thomwolf's avatar
thomwolf committed
95
                vocab_size=self.vocab_size,
96
97
98
99
100
101
102
103
104
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                cutoffs=self.cutoffs,
                d_model=self.hidden_size,
                d_embed=self.d_embed,
                n_head=self.num_attention_heads,
                d_head=self.d_head,
                d_inner=self.d_inner,
                div_val=self.div_val,
105
106
                n_layer=self.num_hidden_layers,
            )
107
108
109
110
111
112
113
114
115
116
117
118

            return (config, input_ids_1, input_ids_2, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            tf.random.set_seed(self.seed)

        def create_and_check_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TFTransfoXLModel(config)

            hidden_states_1, mems_1 = model(input_ids_1)

119
            inputs = {"input_ids": input_ids_2, "mems": mems_1}
120
121
122
123
124
125
126
127
128
129
130

            hidden_states_2, mems_2 = model(inputs)

            result = {
                "hidden_states_1": hidden_states_1.numpy(),
                "mems_1": [mem.numpy() for mem in mems_1],
                "hidden_states_2": hidden_states_2.numpy(),
                "mems_2": [mem.numpy() for mem in mems_2],
            }

            self.parent.assertListEqual(
131
132
                list(result["hidden_states_1"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
133
            self.parent.assertListEqual(
134
135
                list(result["hidden_states_2"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
136
137
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
138
139
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
140
141
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_2"]),
142
143
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
144
145
146
147
148
149

        def create_and_check_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
            model = TFTransfoXLLMHeadModel(config)

            lm_logits_1, mems_1 = model(input_ids_1)

150
            inputs = {"input_ids": input_ids_1, "labels": lm_labels}
151
152
153
154
            _, mems_1 = model(inputs)

            lm_logits_2, mems_2 = model([input_ids_2, mems_1])

155
            inputs = {"input_ids": input_ids_1, "mems": mems_1, "labels": lm_labels}
156
157
158
159
160
161
162
163
164
165
166

            _, mems_2 = model(inputs)

            result = {
                "mems_1": [mem.numpy() for mem in mems_1],
                "lm_logits_1": lm_logits_1.numpy(),
                "mems_2": [mem.numpy() for mem in mems_2],
                "lm_logits_2": lm_logits_2.numpy(),
            }

            self.parent.assertListEqual(
167
168
                list(result["lm_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
169
170
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_1"]),
171
172
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
173
174

            self.parent.assertListEqual(
175
176
                list(result["lm_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
177
178
            self.parent.assertListEqual(
                list(list(mem.shape) for mem in result["mems_2"]),
179
180
                [[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
            )
181
182
183
184

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
185
            inputs_dict = {"input_ids": input_ids_1}
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFTransfoXLModelTest.TFTransfoXLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_model(*config_and_inputs)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_lm_head(*config_and_inputs)

205
    @slow
206
207
    def test_model_from_pretrained(self):
        for model_name in list(TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
208
            model = TFTransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
209
            self.assertIsNotNone(model)