"vscode:/vscode.git/clone" did not exist on "ec6fb25c21d0c9248f5ef6ce986426e124cd3da6"
run_generation.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
keskarnitish's avatar
keskarnitish committed
17
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/CTRL/Transformer-XL/XLNet)
18
19
20
21
22
23
24
25
26
27
28
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import argparse
import logging
from tqdm import trange

import torch
import torch.nn.functional as F
import numpy as np

keskarnitish's avatar
keskarnitish committed
29
from transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig, CTRLConfig
30

31
32
33
34
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
from transformers import XLNetLMHeadModel, XLNetTokenizer
from transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
keskarnitish's avatar
keskarnitish committed
35
from transformers import CTRLLMHeadModel, CTRLTokenizer
36
37
38
39
40
41
42
43

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

MAX_LENGTH = int(10000)  # Hardcoded max length to avoid infinite loop

keskarnitish's avatar
keskarnitish committed
44
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig, CTRLConfig)), ())
45
46
47

MODEL_CLASSES = {
    'gpt2': (GPT2LMHeadModel, GPT2Tokenizer),
keskarnitish's avatar
keskarnitish committed
48
    'ctrl': (CTRLLMHeadModel, CTRLTokenizer),
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    'openai-gpt': (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
    'xlnet': (XLNetLMHeadModel, XLNetTokenizer),
    'transfo-xl': (TransfoXLLMHeadModel, TransfoXLTokenizer),
}

# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
PADDING_TEXT = """ In 1991, the remains of Russian Tsar Nicholas II and his family
(except for Alexei and Maria) are discovered.
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
remainder of the story. 1883 Western Siberia,
a young Grigori Rasputin is asked by his father and a group of men to perform magic.
Rasputin has a vision and denounces one of the men as a horse thief. Although his
father initially slaps him for making such an accusation, Rasputin watches as the
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""


def set_seed(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits


keskarnitish's avatar
keskarnitish committed
107
def sample_sequence(model, length, context, num_samples=1, temperature=1, top_k=0, top_p=0.0, repetition_penalty=1.0, is_xlnet=False, device='cpu'):
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    context = torch.tensor(context, dtype=torch.long, device=device)
    context = context.unsqueeze(0).repeat(num_samples, 1)
    generated = context
    with torch.no_grad():
        for _ in trange(length):

            inputs = {'input_ids': generated}
            if is_xlnet: 
                # XLNet is a direct (predict same token, not next token) and bi-directional model by default
                # => need one additional dummy token in the input (will be masked), attention mask and target mapping (see model docstring)
                input_ids = torch.cat((generated, torch.zeros((1, 1), dtype=torch.long, device=device)), dim=1)
                perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float, device=device)
                perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
                target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float, device=device)
                target_mapping[0, 0, -1] = 1.0  # predict last token
                inputs = {'input_ids': input_ids, 'perm_mask': perm_mask, 'target_mapping': target_mapping}

            outputs = model(**inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
keskarnitish's avatar
keskarnitish committed
126
127
128
129
130
131
            next_token_logits = outputs[0][0, -1, :] / (temperature if temperature > 0 else 1.)

            # reptition penalty from CTRL (https://arxiv.org/abs/1909.05858)
            for _ in set(generated):
                next_token_logits[_] /= repetition_penalty
                
132
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
keskarnitish's avatar
keskarnitish committed
133
134
135
136
            if temperature == 0: #greedy sampling:
                next_token = torch.argmax(filtered_logits).unsqueeze(0)
            else:
                next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
137
138
139
140
141
142
            generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
    return generated


def main():
    parser = argparse.ArgumentParser()
143
144
145
146
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
147
148
149
    parser.add_argument("--prompt", type=str, default="")
    parser.add_argument("--padding_text", type=str, default="")
    parser.add_argument("--length", type=int, default=20)
keskarnitish's avatar
keskarnitish committed
150
151
152
153
    parser.add_argument("--temperature", type=float, default=1.0,
                        help="temperature of 0 implies greedy sampling")
    parser.add_argument("--repetition_penalty", type=float, default=1.0,
                        help="primarily useful for CTRL model; in that case, use 1.2")
154
155
156
157
158
159
160
    parser.add_argument("--top_k", type=int, default=0)
    parser.add_argument("--top_p", type=float, default=0.9)
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")
    args = parser.parse_args()
keskarnitish's avatar
keskarnitish committed
161
162
163
164
    if args.model_type in ["ctrl"]:
        if args.temperature > 0.7 : 
            print('CTRL typically works better with lower temperatures (and lower top_k).')
        
165
166
167
168
169
    args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    args.n_gpu = torch.cuda.device_count()

    set_seed(args)

170
    args.model_type = args.model_type.lower()
171
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
172
173
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    model = model_class.from_pretrained(args.model_name_or_path)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    model.to(args.device)
    model.eval()

    if args.length < 0 and model.config.max_position_embeddings > 0:
        args.length = model.config.max_position_embeddings
    elif 0 < model.config.max_position_embeddings < args.length:
        args.length = model.config.max_position_embeddings  # No generation bigger than model size 
    elif args.length < 0:
        args.length = MAX_LENGTH  # avoid infinite loop

    print(args)
    while True:
        raw_text = args.prompt if args.prompt else input("Model prompt >>> ")
        if args.model_type in ["transfo-xl", "xlnet"]:
            # Models with memory likes to have a long prompt for short inputs.
            raw_text = (args.padding_text if args.padding_text else PADDING_TEXT) + raw_text
        context_tokens = tokenizer.encode(raw_text)
        out = sample_sequence(
            model=model,
            context=context_tokens,
            length=args.length,
            temperature=args.temperature,
            top_k=args.top_k,
            top_p=args.top_p,
keskarnitish's avatar
keskarnitish committed
198
            repetition_penalty=args.repetition_penalty,
199
200
201
202
203
204
205
206
207
208
209
210
211
            device=args.device,
            is_xlnet=bool(args.model_type == "xlnet"),
        )
        out = out[0, len(context_tokens):].tolist()
        text = tokenizer.decode(out, clean_up_tokenization_spaces=True)
        print(text)
        if args.prompt:
            break
    return text


if __name__ == '__main__':
    main()