test_processing_common.py 4.63 KB
Newer Older
Yih-Dar's avatar
Yih-Dar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import tempfile
import unittest

from transformers import CLIPTokenizerFast, ProcessorMixin
from transformers.models.auto.processing_auto import processor_class_from_name
from transformers.testing_utils import (
    check_json_file_has_correct_format,
    require_tokenizers,
    require_torch,
    require_vision,
)
from transformers.utils import is_vision_available


if is_vision_available():
    from transformers import CLIPImageProcessor


@require_torch
class ProcessorTesterMixin:
    processor_class = None

    def prepare_processor_dict(self):
        return {}

    def get_component(self, attribute, **kwargs):
        assert attribute in self.processor_class.attributes
        component_class_name = getattr(self.processor_class, f"{attribute}_class")
        if isinstance(component_class_name, tuple):
            component_class_name = component_class_name[0]

        component_class = processor_class_from_name(component_class_name)
        component = component_class.from_pretrained(self.tmpdirname, **kwargs)  # noqa

        return component

    def prepare_components(self):
        components = {}
        for attribute in self.processor_class.attributes:
            component = self.get_component(attribute)
            components[attribute] = component

        return components

    def get_processor(self):
        components = self.prepare_components()
        processor = self.processor_class(**components, **self.prepare_processor_dict())
        return processor

    def test_processor_to_json_string(self):
        processor = self.get_processor()
        obj = json.loads(processor.to_json_string())
        for key, value in self.prepare_processor_dict().items():
            self.assertEqual(obj[key], value)
            self.assertEqual(getattr(processor, key, None), value)

    def test_processor_from_and_save_pretrained(self):
        processor_first = self.get_processor()

        with tempfile.TemporaryDirectory() as tmpdirname:
78
79
80
81
            saved_files = processor_first.save_pretrained(tmpdirname)
            if len(saved_files) > 0:
                check_json_file_has_correct_format(saved_files[0])
                processor_second = self.processor_class.from_pretrained(tmpdirname)
Yih-Dar's avatar
Yih-Dar committed
82

83
                self.assertEqual(processor_second.to_dict(), processor_first.to_dict())
Yih-Dar's avatar
Yih-Dar committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128


class MyProcessor(ProcessorMixin):
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "CLIPImageProcessor"
    tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")

    def __init__(self, image_processor=None, tokenizer=None, processor_attr_1=1, processor_attr_2=True):
        super().__init__(image_processor, tokenizer)

        self.processor_attr_1 = processor_attr_1
        self.processor_attr_2 = processor_attr_2


@require_tokenizers
@require_vision
class ProcessorTest(unittest.TestCase):
    processor_class = MyProcessor

    def prepare_processor_dict(self):
        return {"processor_attr_1": 1, "processor_attr_2": False}

    def get_processor(self):
        image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
        tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14")
        processor = MyProcessor(image_processor, tokenizer, **self.prepare_processor_dict())

        return processor

    def test_processor_to_json_string(self):
        processor = self.get_processor()
        obj = json.loads(processor.to_json_string())
        for key, value in self.prepare_processor_dict().items():
            self.assertEqual(obj[key], value)
            self.assertEqual(getattr(processor, key, None), value)

    def test_processor_from_and_save_pretrained(self):
        processor_first = self.get_processor()

        with tempfile.TemporaryDirectory() as tmpdirname:
            saved_file = processor_first.save_pretrained(tmpdirname)[0]
            check_json_file_has_correct_format(saved_file)
            processor_second = self.processor_class.from_pretrained(tmpdirname)

        self.assertEqual(processor_second.to_dict(), processor_first.to_dict())