modeling_perceiver.py 139 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch Perceiver model."""
NielsRogge's avatar
NielsRogge committed
16
17
18
19
20
21

import abc
import math
from dataclasses import dataclass
from functools import reduce
from operator import __add__
22
from typing import Any, Callable, Dict, Mapping, Optional, Tuple, Union
NielsRogge's avatar
NielsRogge committed
23
24
25
26
27
28
29
30
31

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithCrossAttentions
32
33
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
34
35
36
37
38
39
40
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
NielsRogge's avatar
NielsRogge committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from .configuration_perceiver import PerceiverConfig


ModalitySizeType = Mapping[str, int]
PreprocessorOutputType = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]
PreprocessorType = Callable[..., PreprocessorOutputType]
PostprocessorType = Callable[..., Any]

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "deepmind/language-perceiver"
_CONFIG_FOR_DOC = "PerceiverConfig"
_TOKENIZER_FOR_DOC = "PerceiverTokenizer"

PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "deepmind/language-perceiver",
    # See all Perceiver models at https://huggingface.co/models?filter=perceiver
]


@dataclass
class PerceiverModelOutput(ModelOutput):
    """
    Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions.

    Args:
67
        logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
NielsRogge's avatar
NielsRogge committed
68
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
69
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
NielsRogge's avatar
NielsRogge committed
70
            Sequence of hidden-states at the output of the last layer of the model.
71
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
72
73
74
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
75
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
79
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
NielsRogge's avatar
NielsRogge committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    """

    logits: torch.FloatTensor = None
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class PerceiverDecoderOutput(ModelOutput):
    """
    Base class for Perceiver decoder outputs, with potential cross-attentions.

    Args:
98
        logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
NielsRogge's avatar
NielsRogge committed
99
            Output of the basic decoder.
100
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
NielsRogge's avatar
NielsRogge committed
104
105
106
107
108
109
110
111
112
113
114
115
    """

    logits: torch.FloatTensor = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class PerceiverMaskedLMOutput(ModelOutput):
    """
    Base class for Perceiver's masked language model outputs.

    Args:
116
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
NielsRogge's avatar
NielsRogge committed
117
            Masked language modeling (MLM) loss.
118
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
NielsRogge's avatar
NielsRogge committed
119
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
120
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
121
122
123
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
124
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
125
126
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents,
            num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the
NielsRogge's avatar
NielsRogge committed
127
            self-attention heads.
128
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
129
130
131
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
NielsRogge's avatar
NielsRogge committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class PerceiverClassifierOutput(ModelOutput):
    """
    Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal
    autoencoding.

    Args:
148
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
NielsRogge's avatar
NielsRogge committed
149
            Classification (or regression if config.num_labels==1) loss.
150
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
NielsRogge's avatar
NielsRogge committed
151
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
152
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
156
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
159
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
160
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162
163
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
            used to compute the weighted average in the cross-attention heads.
NielsRogge's avatar
NielsRogge committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor]] = None


class PerceiverEmbeddings(nn.Module):
    """Construct the latent embeddings."""

    def __init__(self, config):
        super().__init__()
        self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents))

    def forward(self, batch_size):
        return self.latents.expand(batch_size, -1, -1)  # Thanks, Phil Wang


class PerceiverSelfAttention(nn.Module):
    """Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder."""

    def __init__(
        self,
        config,
        is_cross_attention=False,
        qk_channels=None,
        v_channels=None,
        num_heads=1,
        q_dim=None,
        kv_dim=None,
    ):
        super().__init__()
        self.num_heads = num_heads
        # Q and K must have the same number of channels.
        # Default to preserving Q's input's shape.
        if qk_channels is None:
            qk_channels = q_dim
        # V's num_channels determines the shape of the output of QKV-attention.
        # Default to the same number of channels used in the key-query operation.
        if v_channels is None:
            v_channels = qk_channels
        if qk_channels % num_heads != 0:
            raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).")
        if v_channels % num_heads != 0:
            raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).")

        self.qk_channels = qk_channels
        self.v_channels = v_channels
        self.qk_channels_per_head = self.qk_channels // num_heads
        self.v_channels_per_head = self.v_channels // num_heads

        # Layer normalization
        self.layernorm1 = nn.LayerNorm(q_dim)
        self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity()

        # Projection matrices
        self.query = nn.Linear(q_dim, qk_channels)
        self.key = nn.Linear(kv_dim, qk_channels)
        self.value = nn.Linear(kv_dim, v_channels)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x, channels_per_head):
        new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        inputs=None,
        inputs_mask=None,
        output_attentions=False,
    ):
        hidden_states = self.layernorm1(hidden_states)
        inputs = self.layernorm2(inputs)

        # Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module,
        # the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to.
        is_cross_attention = inputs is not None
        queries = self.query(hidden_states)

        if is_cross_attention:
            keys = self.key(inputs)
            values = self.value(inputs)
            attention_mask = inputs_mask
        else:
            keys = self.key(hidden_states)
            values = self.value(hidden_states)

        # Reshape channels for multi-head attention.
        # We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head)
        queries = self.transpose_for_scores(queries, self.qk_channels_per_head)
        keys = self.transpose_for_scores(keys, self.qk_channels_per_head)
        values = self.transpose_for_scores(values, self.v_channels_per_head)

        # Take the dot product between the queries and keys to get the raw attention scores.
        attention_scores = torch.matmul(queries, keys.transpose(-1, -2))

        batch_size, num_heads, seq_len, q_head_dim = queries.shape
        _, _, _, v_head_dim = values.shape
        hiddens = self.num_heads * v_head_dim

        attention_scores = attention_scores / math.sqrt(q_head_dim)

        if attention_mask is not None:
            # Apply the attention mask (precomputed for all layers in PerceiverModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, values)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (hiddens,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs


class PerceiverSelfOutput(nn.Module):
    def __init__(self, config, input_channels, output_channels):
        super().__init__()
        self.dense = nn.Linear(input_channels, output_channels)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        return hidden_states


class PerceiverAttention(nn.Module):
    """Attention module, including a dense block."""

    def __init__(
        self,
        config,
        is_cross_attention=False,
        qk_channels=None,
        v_channels=None,
        num_heads=1,
        q_dim=None,
        kv_dim=None,
        use_query_residual=True,
    ):
        super().__init__()
        # MultiHead attention
        if is_cross_attention and qk_channels is None:
            if config.cross_attention_shape_for_attention == "q":
                qk_channels = q_dim
            elif config.cross_attention_shape_for_attention == "kv":
                qk_channels = kv_dim
            else:
                raise ValueError(
                    f"Unknown value {config.cross_attention_shape_for_attention} for "
                    "cross_attention_shape_for_attention."
                )
        else:
            if qk_channels is None:
                qk_channels = q_dim
            if v_channels is None:
                v_channels = qk_channels
        self.self = PerceiverSelfAttention(
            config,
            is_cross_attention=is_cross_attention,
            qk_channels=qk_channels,
            v_channels=v_channels,
            num_heads=num_heads,
            q_dim=q_dim,
            kv_dim=kv_dim,
        )
        # dense block
        output_channels = None
        if is_cross_attention:
            output_channels = q_dim
        else:
            if output_channels is None:
                output_channels = v_channels
        self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels)
        self.use_query_residual = use_query_residual
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        inputs=None,
        inputs_mask=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            inputs,
            inputs_mask,
            output_attentions,
        )

        # Output projection
        attention_output = self.output(self_outputs[0])

        # Optionally include a residual to the original queries.
        # Consider omitting the residual if the semantics of query and output
        # are different, e.g. if queries are positions and outputs are pixels.
        if self.use_query_residual:
            attention_output = attention_output + hidden_states

        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class PerceiverMLP(nn.Module):
    """A Transformer-style dense module to follow attention."""

    def __init__(self, config, input_size, widening_factor):
        super().__init__()
        self.dense1 = nn.Linear(input_size, widening_factor * input_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
419
        self.dense2 = nn.Linear(widening_factor * input_size, input_size)
NielsRogge's avatar
NielsRogge committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

    def forward(self, hidden_states):
        hidden_states = self.dense1(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.dense2(hidden_states)
        return hidden_states


class PerceiverLayer(nn.Module):
    def __init__(
        self,
        config,
        is_cross_attention=False,
        qk_channels=None,
        v_channels=None,
        num_heads=1,
        q_dim=None,
        kv_dim=None,
        widening_factor=4,
        use_query_residual=True,
    ):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = PerceiverAttention(
            config,
            is_cross_attention=is_cross_attention,
            qk_channels=qk_channels,
            v_channels=v_channels,
            num_heads=num_heads,
            q_dim=q_dim,
            kv_dim=kv_dim,
            use_query_residual=use_query_residual,
        )
        self.layernorm = nn.LayerNorm(q_dim)
        self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        inputs=None,
        inputs_mask=None,
        output_attentions=False,
    ):
        attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            inputs,
            inputs_mask,
            output_attentions,
        )
        attention_output = attention_outputs[0]

        outputs = attention_outputs[1:]  # add attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )

        layer_output = layer_output + attention_output  # residual connection

        outputs = (layer_output,) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        layer_output = self.layernorm(attention_output)
        layer_output = self.mlp(layer_output)
        return layer_output


class PerceiverEncoder(nn.Module):
    """The Perceiver Encoder: a scalable, fully attentional encoder."""

NielsRogge's avatar
NielsRogge committed
497
    def __init__(self, config, kv_dim=None):
NielsRogge's avatar
NielsRogge committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        super().__init__()
        self.config = config

        # Check that we can use multihead-attention with these shapes.
        if config.d_latents % config.num_self_attention_heads != 0:
            raise ValueError(
                f"num_z_channels ({config.d_latents}) must be divisible by"
                f" num_self_attend_heads ({config.num_self_attention_heads})."
            )
        if config.d_latents % config.num_cross_attention_heads != 0:
            raise ValueError(
                f"num_z_channels ({config.d_latents}) must be divisible by"
                f" num_cross_attend_heads ({config.num_cross_attention_heads})."
            )

        # Construct the cross attention layer.
        self.cross_attention = PerceiverLayer(
            config,
            is_cross_attention=True,
            qk_channels=config.qk_channels,
            v_channels=config.v_channels,
            num_heads=config.num_cross_attention_heads,
            q_dim=config.d_latents,
NielsRogge's avatar
NielsRogge committed
521
            kv_dim=kv_dim,
NielsRogge's avatar
NielsRogge committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
            widening_factor=config.cross_attention_widening_factor,
            use_query_residual=config.use_query_residual,
        )

        # Construct a single block of self-attention layers.
        # We get deeper architectures by applying this block more than once.
        self_attention_layers = []
        for _ in range(config.num_self_attends_per_block):
            layer = PerceiverLayer(
                config,
                is_cross_attention=False,
                qk_channels=config.qk_channels,
                v_channels=config.v_channels,
                num_heads=config.num_self_attention_heads,
                q_dim=config.d_latents,
                kv_dim=config.d_latents,
                widening_factor=config.self_attention_widening_factor,
            )
            self_attention_layers.append(layer)

        self.self_attends = nn.ModuleList(self_attention_layers)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        inputs=None,
        inputs_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions else None

        # Apply the cross-attention between the latents (hidden_states) and inputs:
        layer_outputs = self.cross_attention(
            hidden_states,
            attention_mask=attention_mask,
            head_mask=None,
            inputs=inputs,
            inputs_mask=inputs_mask,
            output_attentions=output_attentions,
        )
        hidden_states = layer_outputs[0]

        if output_attentions:
            all_cross_attentions = all_cross_attentions + (layer_outputs[1],)

        # Apply the block of self-attention layers more than once:
        for _ in range(self.config.num_blocks):
            for i, layer_module in enumerate(self.self_attends):
                if output_hidden_states:
                    all_hidden_states = all_hidden_states + (hidden_states,)

                layer_head_mask = head_mask[i] if head_mask is not None else None

                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=attention_mask,
                    head_mask=layer_head_mask,
                    output_attentions=output_attentions,
                )

                hidden_states = layer_outputs[0]
                if output_attentions:
                    all_self_attentions = all_self_attentions + (layer_outputs[1],)

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithCrossAttentions(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class PerceiverPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = PerceiverConfig
    base_model_prefix = "perceiver"
617
    main_input_name = "inputs"
NielsRogge's avatar
NielsRogge committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif hasattr(module, "latents"):
            module.latents.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding):
            module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.ParameterDict):
            for modality in module.keys():
                module[modality].data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


PERCEIVER_START_DOCSTRING = r"""
644
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
NielsRogge's avatar
NielsRogge committed
645
646
647
648
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
649
        config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
NielsRogge's avatar
NielsRogge committed
650
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
651
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
NielsRogge's avatar
NielsRogge committed
652
653
654
"""

PERCEIVER_MODEL_START_DOCSTRING = r"""
655
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
NielsRogge's avatar
NielsRogge committed
656
657
658
659
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
660
        config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
NielsRogge's avatar
NielsRogge committed
661
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
662
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
663
        decoder (*DecoderType*, *optional*):
NielsRogge's avatar
NielsRogge committed
664
            Optional decoder to use to decode the latent representation of the encoder. Examples include
665
666
667
668
            *transformers.models.perceiver.modeling_perceiver.PerceiverBasicDecoder*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationDecoder*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder*.
        input_preprocessor (*PreprocessorType*, *optional*):
NielsRogge's avatar
NielsRogge committed
669
            Optional input preprocessor to use. Examples include
670
671
672
673
674
            *transformers.models.perceiver.modeling_perceiver.PerceiverImagePreprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverTextPreprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor*.
        output_postprocessor (*PostprocessorType*, *optional*):
NielsRogge's avatar
NielsRogge committed
675
            Optional output postprocessor to use. Examples include
676
677
678
679
680
            *transformers.models.perceiver.modeling_perceiver.PerceiverImagePostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor*,
            *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor*.
NielsRogge's avatar
NielsRogge committed
681
682
683
684
685
686

        Note that you can define your own decoders, preprocessors and/or postprocessors to fit your use-case.
"""

PERCEIVER_INPUTS_DOCSTRING = r"""
    Args:
687
        inputs (`torch.FloatTensor`):
NielsRogge's avatar
NielsRogge committed
688
            Inputs to the perceiver. Can be anything: images, text, audio, video, etc.
689
690
        attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
NielsRogge's avatar
NielsRogge committed
691
692
693
694

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

695
696
697
            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
NielsRogge's avatar
NielsRogge committed
698
699
700
701

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

702
703
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
NielsRogge's avatar
NielsRogge committed
704
            tensors for more detail.
705
706
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
NielsRogge's avatar
NielsRogge committed
707
            more detail.
708
        return_dict (`bool`, *optional*):
709
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
NielsRogge's avatar
NielsRogge committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
"""


@add_start_docstrings(
    """The Perceiver: a scalable, fully attentional architecture.""",
    PERCEIVER_MODEL_START_DOCSTRING,
)
class PerceiverModel(PerceiverPreTrainedModel):
    def __init__(
        self,
        config,
        decoder=None,
        input_preprocessor: PreprocessorType = None,
        output_postprocessor: PostprocessorType = None,
    ):
        super().__init__(config)
        self.config = config

        self.input_preprocessor = input_preprocessor
        self.output_postprocessor = output_postprocessor
        self.embeddings = PerceiverEmbeddings(config)
NielsRogge's avatar
NielsRogge committed
731
732
733
        self.encoder = PerceiverEncoder(
            config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model
        )
NielsRogge's avatar
NielsRogge committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        self.decoder = decoder

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.latents

    def set_input_embeddings(self, value):
        self.embeddings.latents = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
754
    @replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC)
NielsRogge's avatar
NielsRogge committed
755
756
757
758
759
760
761
762
763
764
    def forward(
        self,
        inputs,
        attention_mask=None,
        subsampled_output_points=None,
        head_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
765
766
767
        r"""
        Returns:

768
769
770
771
        Examples:

        ```python
        >>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverFeatureExtractor, PerceiverModel
Sylvain Gugger's avatar
Sylvain Gugger committed
772
773
774
775
776
        >>> from transformers.models.perceiver.modeling_perceiver import (
        ...     PerceiverTextPreprocessor,
        ...     PerceiverImagePreprocessor,
        ...     PerceiverClassificationDecoder,
        ... )
777
778
779
780
781
782
783
784
785
786
787
        >>> import torch
        >>> import requests
        >>> from PIL import Image

        >>> # EXAMPLE 1: using the Perceiver to classify texts
        >>> # - we define a TextPreprocessor, which can be used to embed tokens
        >>> # - we define a ClassificationDecoder, which can be used to decode the
        >>> # final hidden states of the latents to classification logits
        >>> # using trainable position embeddings
        >>> config = PerceiverConfig()
        >>> preprocessor = PerceiverTextPreprocessor(config)
Sylvain Gugger's avatar
Sylvain Gugger committed
788
789
790
791
792
793
        >>> decoder = PerceiverClassificationDecoder(
        ...     config,
        ...     num_channels=config.d_latents,
        ...     trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
        ...     use_query_residual=True,
        ... )
794
795
796
797
798
799
800
801
        >>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder)

        >>> # you can then do a forward pass as follows:
        >>> tokenizer = PerceiverTokenizer()
        >>> text = "hello world"
        >>> inputs = tokenizer(text, return_tensors="pt").input_ids

        >>> with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
802
        ...     outputs = model(inputs=inputs)
803
804
805
806
807
808
809
810
811
812
        >>> logits = outputs.logits

        >>> # to train, one can train the model using standard cross-entropy:
        >>> criterion = torch.nn.CrossEntropyLoss()

        >>> labels = torch.tensor([1])
        >>> loss = criterion(logits, labels)

        >>> # EXAMPLE 2: using the Perceiver to classify images
        >>> # - we define an ImagePreprocessor, which can be used to embed images
Sylvain Gugger's avatar
Sylvain Gugger committed
813
814
815
816
817
818
819
820
821
822
        >>> preprocessor = PerceiverImagePreprocessor(
        ...     config,
        ...     prep_type="conv1x1",
        ...     spatial_downsample=1,
        ...     out_channels=256,
        ...     position_encoding_type="trainable",
        ...     concat_or_add_pos="concat",
        ...     project_pos_dim=256,
        ...     trainable_position_encoding_kwargs=dict(
        ...         num_channels=256,
823
        ...         index_dims=config.image_size**2,
Sylvain Gugger's avatar
Sylvain Gugger committed
824
        ...     ),
825
826
827
        ... )

        >>> model = PerceiverModel(
Sylvain Gugger's avatar
Sylvain Gugger committed
828
829
830
        ...     config,
        ...     input_preprocessor=preprocessor,
        ...     decoder=PerceiverClassificationDecoder(
831
        ...         config,
Sylvain Gugger's avatar
Sylvain Gugger committed
832
833
834
835
        ...         num_channels=config.d_latents,
        ...         trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
        ...         use_query_residual=True,
        ...     ),
836
837
838
839
        ... )

        >>> # you can then do a forward pass as follows:
        >>> feature_extractor = PerceiverFeatureExtractor()
Sylvain Gugger's avatar
Sylvain Gugger committed
840
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
841
842
843
844
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> inputs = feature_extractor(image, return_tensors="pt").pixel_values

        >>> with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
845
        ...     outputs = model(inputs=inputs)
846
847
848
849
850
851
852
853
        >>> logits = outputs.logits

        >>> # to train, one can train the model using standard cross-entropy:
        >>> criterion = torch.nn.CrossEntropyLoss()

        >>> labels = torch.tensor([1])
        >>> loss = criterion(logits, labels)
        ```"""
NielsRogge's avatar
NielsRogge committed
854
855
856
857
858
859
860
861
862
863
864
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.input_preprocessor is not None:
            inputs, modality_sizes, inputs_without_pos = self.input_preprocessor(inputs)
        else:
            modality_sizes = None
            inputs_without_pos = None
NielsRogge's avatar
NielsRogge committed
865
866
867
868
869
            if inputs.size()[-1] != self.config.d_model:
                raise ValueError(
                    f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model: {self.config.d_model}. "
                    "Make sure to set config.d_model appropriately."
                )
NielsRogge's avatar
NielsRogge committed
870

NielsRogge's avatar
NielsRogge committed
871
        batch_size, seq_length, _ = inputs.size()
NielsRogge's avatar
NielsRogge committed
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
        device = inputs.device

        # If no attention mask is provided, make them all ones
        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length)), device=device)
        # Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
        extended_attention_mask = self.invert_attention_mask(attention_mask)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_blocks x num_heads]
        # and head_mask is converted to shape [num_blocks x batch x num_heads x N x N]
        head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block)

        embedding_output = self.embeddings(batch_size=batch_size)

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=None,
            head_mask=head_mask,
            inputs=inputs,
            inputs_mask=extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]

        logits = None
        if self.decoder:
            if subsampled_output_points is not None:
                output_modality_sizes = {
                    "audio": subsampled_output_points["audio"].shape[0],
                    "image": subsampled_output_points["image"].shape[0],
                    "label": 1,
                }
            else:
                output_modality_sizes = None
            decoder_query = self.decoder.decoder_query(
                inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points
            )
            decoder_outputs = self.decoder(
                decoder_query,
                z=sequence_output,
                query_mask=extended_attention_mask,
                output_attentions=output_attentions,
            )
            logits = decoder_outputs.logits

            # add cross-attentions of decoder
            if output_attentions and decoder_outputs.cross_attentions is not None:
                if return_dict:
                    encoder_outputs.cross_attentions = (
                        encoder_outputs.cross_attentions + decoder_outputs.cross_attentions
                    )
                else:
                    encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions

            if self.output_postprocessor:
                logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes)

        if not return_dict:
            if logits is not None:
                return (logits, sequence_output) + encoder_outputs[1:]
            else:
                return (sequence_output,) + encoder_outputs[1:]

        return PerceiverModelOutput(
            logits=logits,
            last_hidden_state=sequence_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


Sylvain Gugger's avatar
Sylvain Gugger committed
949
@add_start_docstrings("""Example use of Perceiver for masked language modeling.""", PERCEIVER_START_DOCSTRING)
NielsRogge's avatar
NielsRogge committed
950
951
952
953
class PerceiverForMaskedLM(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

NielsRogge's avatar
NielsRogge committed
954
955
        text_preprocessor = PerceiverTextPreprocessor(config)

NielsRogge's avatar
NielsRogge committed
956
        trainable_position_encoding_kwargs_decoder = dict(
NielsRogge's avatar
NielsRogge committed
957
            num_channels=text_preprocessor.num_channels, index_dims=config.max_position_embeddings
NielsRogge's avatar
NielsRogge committed
958
959
960
961
        )

        self.perceiver = PerceiverModel(
            config,
NielsRogge's avatar
NielsRogge committed
962
            input_preprocessor=text_preprocessor,
NielsRogge's avatar
NielsRogge committed
963
964
965
966
            decoder=PerceiverBasicDecoder(
                config,
                output_num_channels=config.d_latents,
                output_index_dims=config.max_position_embeddings,  # we need to define the seq_len of the inputs beforehand
NielsRogge's avatar
NielsRogge committed
967
                num_channels=text_preprocessor.num_channels,
NielsRogge's avatar
NielsRogge committed
968
                qk_channels=8 * 32,
NielsRogge's avatar
NielsRogge committed
969
                v_channels=text_preprocessor.num_channels,
NielsRogge's avatar
NielsRogge committed
970
971
972
973
974
975
976
977
978
979
980
981
                num_heads=8,
                use_query_residual=False,
                final_project=False,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
            ),
        )
        self.embedding_decoder = PerceiverEmbeddingDecoder(config)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
982
    @replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
NielsRogge's avatar
NielsRogge committed
983
984
    def forward(
        self,
985
986
987
988
989
990
991
992
993
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        input_ids: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverMaskedLMOutput]:
NielsRogge's avatar
NielsRogge committed
994
        r"""
995
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
996
997
998
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
999
1000
1001

        Returns:

1002
        Examples:
1003

1004
1005
1006
        ```python
        >>> from transformers import PerceiverTokenizer, PerceiverForMaskedLM
        >>> import torch
1007

Sylvain Gugger's avatar
Sylvain Gugger committed
1008
1009
        >>> tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver")
        >>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
1010

1011
1012
1013
1014
        >>> # training
        >>> text = "This is an incomplete sentence where some words are missing."
        >>> inputs = tokenizer(text, padding="max_length", return_tensors="pt")
        >>> # mask " missing."
Sylvain Gugger's avatar
Sylvain Gugger committed
1015
        >>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id
1016
        >>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids
1017

1018
1019
1020
        >>> outputs = model(**inputs, labels=labels)
        >>> loss = outputs.loss
        >>> logits = outputs.logits
1021

1022
1023
1024
        >>> # inference
        >>> text = "This is an incomplete sentence where some words are missing."
        >>> encoding = tokenizer(text, padding="max_length", return_tensors="pt")
1025

1026
        >>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space.
Sylvain Gugger's avatar
Sylvain Gugger committed
1027
        >>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id
1028

1029
1030
        >>> # forward pass
        >>> with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
1031
        ...     outputs = model(**encoding)
1032
1033
1034
1035
1036
1037
        >>> logits = outputs.logits

        >>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
        >>> tokenizer.decode(masked_tokens_predictions)
        ' missing.'
        ```"""
1038
1039
1040
1041
        if inputs is not None and input_ids is not None:
            raise ValueError("You cannot use both `inputs` and `input_ids`")
        elif inputs is None and input_ids is not None:
            inputs = input_ids
NielsRogge's avatar
NielsRogge committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.embedding_decoder(
            outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings
        )

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return PerceiverMaskedLMOutput(
            loss=masked_lm_loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


Sylvain Gugger's avatar
Sylvain Gugger committed
1076
@add_start_docstrings("""Example use of Perceiver for text classification.""", PERCEIVER_START_DOCSTRING)
NielsRogge's avatar
NielsRogge committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
class PerceiverForSequenceClassification(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        trainable_position_encoding_kwargs_decoder = dict(num_channels=config.d_latents, index_dims=1)

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverTextPreprocessor(config),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
Sylvain Gugger's avatar
Sylvain Gugger committed
1099
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
NielsRogge's avatar
NielsRogge committed
1100
1101
    def forward(
        self,
1102
1103
1104
1105
1106
1107
1108
1109
1110
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        input_ids: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
NielsRogge's avatar
NielsRogge committed
1111
        r"""
1112
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1113
1114
1115
            Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels -
            1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels >
            1` a classification loss is computed (Cross-Entropy).
NielsRogge's avatar
NielsRogge committed
1116
1117
1118

        Returns:

1119
        Examples:
NielsRogge's avatar
NielsRogge committed
1120

1121
1122
        ```python
        >>> from transformers import PerceiverTokenizer, PerceiverForSequenceClassification
NielsRogge's avatar
NielsRogge committed
1123

Sylvain Gugger's avatar
Sylvain Gugger committed
1124
1125
        >>> tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver")
        >>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver")
NielsRogge's avatar
NielsRogge committed
1126

1127
        >>> text = "hello world"
Qing's avatar
Qing committed
1128
        >>> inputs = tokenizer(text, return_tensors="pt").input_ids
1129
1130
1131
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        ```"""
1132
1133
1134
1135
        if inputs is not None and input_ids is not None:
            raise ValueError("You cannot use both `inputs` and `input_ids`")
        elif inputs is None and input_ids is not None:
            inputs = input_ids
NielsRogge's avatar
NielsRogge committed
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for image classification, for tasks such as ImageNet.

This model uses learned position embeddings. In other words, this model is not given any privileged information about
the structure of images. As shown in the paper, this model can achieve a top-1 accuracy of 72.7 on ImageNet.

Sylvain Gugger's avatar
Sylvain Gugger committed
1193
1194
1195
1196
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv1x1"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
NielsRogge's avatar
NielsRogge committed
1197
1198
1199
1200
1201
1202
1203
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

1204
        trainable_position_encoding_kwargs_preprocessor = dict(num_channels=256, index_dims=config.image_size**2)
NielsRogge's avatar
NielsRogge committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        trainable_position_encoding_kwargs_decoder = dict(num_channels=config.d_latents, index_dims=1)

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverImagePreprocessor(
                config,
                prep_type="conv1x1",
                spatial_downsample=1,
                out_channels=256,
                position_encoding_type="trainable",
                concat_or_add_pos="concat",
                project_pos_dim=256,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor,
            ),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1235
1236
1237
1238
1239
1240
1241
1242
1243
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
NielsRogge's avatar
NielsRogge committed
1244
        r"""
1245
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1246
1247
1248
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
NielsRogge's avatar
NielsRogge committed
1249
1250
1251

        Returns:

1252
        Examples:
NielsRogge's avatar
NielsRogge committed
1253

1254
1255
1256
1257
        ```python
        >>> from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationLearned
        >>> from PIL import Image
        >>> import requests
NielsRogge's avatar
NielsRogge committed
1258

Sylvain Gugger's avatar
Sylvain Gugger committed
1259
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1260
        >>> image = Image.open(requests.get(url, stream=True).raw)
NielsRogge's avatar
NielsRogge committed
1261

Sylvain Gugger's avatar
Sylvain Gugger committed
1262
1263
        >>> feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-learned")
        >>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
NielsRogge's avatar
NielsRogge committed
1264

1265
1266
1267
1268
1269
1270
1271
        >>> inputs = feature_extractor(images=image, return_tensors="pt").pixel_values
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        ```"""
1272
1273
1274
1275
1276
        if inputs is not None and pixel_values is not None:
            raise ValueError("You cannot use both `inputs` and `pixel_values`")
        elif inputs is None and pixel_values is not None:
            inputs = pixel_values

NielsRogge's avatar
NielsRogge committed
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for image classification, for tasks such as ImageNet.

This model uses fixed 2D Fourier position embeddings. As shown in the paper, this model can achieve a top-1 accuracy of
79.0 on ImageNet, and 84.5 when pre-trained on a large-scale dataset (i.e. JFT).

Sylvain Gugger's avatar
Sylvain Gugger committed
1332
1333
1334
1335
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="pixels"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
NielsRogge's avatar
NielsRogge committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        fourier_position_encoding_kwargs_preprocessor = dict(
            concat_pos=True, max_resolution=(224, 224), num_bands=64, sine_only=False
        )
        trainable_position_encoding_kwargs_decoder = dict(num_channels=config.d_latents, index_dims=1)

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverImagePreprocessor(
                config,
                prep_type="pixels",
                spatial_downsample=1,
                fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
            ),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1372
1373
1374
1375
1376
1377
1378
1379
1380
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
NielsRogge's avatar
NielsRogge committed
1381
        r"""
1382
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1383
1384
1385
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
NielsRogge's avatar
NielsRogge committed
1386
1387
1388

        Returns:

1389
        Examples:
NielsRogge's avatar
NielsRogge committed
1390

1391
1392
1393
1394
        ```python
        >>> from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationFourier
        >>> from PIL import Image
        >>> import requests
NielsRogge's avatar
NielsRogge committed
1395

Sylvain Gugger's avatar
Sylvain Gugger committed
1396
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1397
        >>> image = Image.open(requests.get(url, stream=True).raw)
NielsRogge's avatar
NielsRogge committed
1398

Sylvain Gugger's avatar
Sylvain Gugger committed
1399
1400
        >>> feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-fourier")
        >>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
NielsRogge's avatar
NielsRogge committed
1401

1402
1403
1404
1405
1406
1407
1408
        >>> inputs = feature_extractor(images=image, return_tensors="pt").pixel_values
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        ```"""
1409
1410
1411
1412
        if inputs is not None and pixel_values is not None:
            raise ValueError("You cannot use both `inputs` and `pixel_values`")
        elif inputs is None and pixel_values is not None:
            inputs = pixel_values
NielsRogge's avatar
NielsRogge committed
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for image classification, for tasks such as ImageNet.

This model uses a 2D conv+maxpool preprocessing network. As shown in the paper, this model can achieve a top-1 accuracy
of 82.1 on ImageNet.

Sylvain Gugger's avatar
Sylvain Gugger committed
1468
1469
1470
1471
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
NielsRogge's avatar
NielsRogge committed
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        fourier_position_encoding_kwargs_preprocessor = dict(
            concat_pos=True, max_resolution=(56, 56), num_bands=64, sine_only=False
        )
        trainable_position_encoding_kwargs_decoder = dict(num_channels=config.d_latents, index_dims=1)

        self.num_labels = config.num_labels
        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=PerceiverImagePreprocessor(
                config,
                prep_type="conv",
                spatial_downsample=1,
                position_encoding_type="fourier",
                fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
            ),
            decoder=PerceiverClassificationDecoder(
                config,
                num_channels=config.d_latents,
                trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
                use_query_residual=True,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1509
1510
1511
1512
1513
1514
1515
1516
1517
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
NielsRogge's avatar
NielsRogge committed
1518
        r"""
1519
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1520
1521
1522
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
NielsRogge's avatar
NielsRogge committed
1523
1524
1525

        Returns:

1526
        Examples:
NielsRogge's avatar
NielsRogge committed
1527

1528
1529
1530
1531
        ```python
        >>> from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationConvProcessing
        >>> from PIL import Image
        >>> import requests
NielsRogge's avatar
NielsRogge committed
1532

Sylvain Gugger's avatar
Sylvain Gugger committed
1533
        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1534
        >>> image = Image.open(requests.get(url, stream=True).raw)
NielsRogge's avatar
NielsRogge committed
1535

Sylvain Gugger's avatar
Sylvain Gugger committed
1536
1537
        >>> feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
        >>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
NielsRogge's avatar
NielsRogge committed
1538

1539
1540
1541
1542
1543
1544
1545
        >>> inputs = feature_extractor(images=image, return_tensors="pt").pixel_values
        >>> outputs = model(inputs=inputs)
        >>> logits = outputs.logits
        >>> # model predicts one of the 1000 ImageNet classes
        >>> predicted_class_idx = logits.argmax(-1).item()
        >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
        ```"""
1546
1547
1548
1549
        if inputs is not None and pixel_values is not None:
            raise ValueError("You cannot use both `inputs` and `pixel_values`")
        elif inputs is None and pixel_values is not None:
            inputs = pixel_values
NielsRogge's avatar
NielsRogge committed
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1600
1601
1602
1603
Example use of Perceiver for optical flow, for tasks such as Sintel and KITTI. [`PerceiverForOpticalFlow`] uses
[`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with *prep_type="patches"*) to preprocess the
input images, and [`~models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder`] to decode the latent
representation of [`PerceiverModel`].
NielsRogge's avatar
NielsRogge committed
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625

As input, one concatenates 2 subsequent frames along the channel dimension and extract a 3 x 3 patch around each pixel
(leading to 3 x 3 x 3 x 2 = 54 values for each pixel). Fixed Fourier position encodings are used to encode the position
of each pixel in the patch. Next, one applies the Perceiver encoder. To decode, one queries the latent representation
using the same encoding used for the input.
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForOpticalFlow(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        fourier_position_encoding_kwargs_preprocessor = dict(
            num_bands=64,
            max_resolution=config.train_size,
            sine_only=False,
            concat_pos=True,
        )
        fourier_position_encoding_kwargs_decoder = dict(
            concat_pos=True, max_resolution=config.train_size, num_bands=64, sine_only=False
        )

NielsRogge's avatar
NielsRogge committed
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
        image_preprocessor = PerceiverImagePreprocessor(
            config,
            prep_type="patches",
            spatial_downsample=1,
            conv_after_patching=True,
            conv_after_patching_in_channels=54,
            temporal_downsample=2,
            position_encoding_type="fourier",
            # position_encoding_kwargs
            fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
        )

NielsRogge's avatar
NielsRogge committed
1638
1639
        self.perceiver = PerceiverModel(
            config,
NielsRogge's avatar
NielsRogge committed
1640
            input_preprocessor=image_preprocessor,
NielsRogge's avatar
NielsRogge committed
1641
1642
            decoder=PerceiverOpticalFlowDecoder(
                config,
NielsRogge's avatar
NielsRogge committed
1643
                num_channels=image_preprocessor.num_channels,
NielsRogge's avatar
NielsRogge committed
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
                output_image_shape=config.train_size,
                rescale_factor=100.0,
                # decoder kwargs
                use_query_residual=False,
                output_num_channels=2,
                # We query the decoder using the first frame features
                # rather than a standard decoder position encoding.
                position_encoding_type="fourier",
                fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder,
            ),
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1663
1664
1665
1666
1667
1668
1669
1670
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
NielsRogge's avatar
NielsRogge committed
1671
        r"""
1672
1673
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`.
NielsRogge's avatar
NielsRogge committed
1674
1675
1676

        Returns:

1677
        Examples:
NielsRogge's avatar
NielsRogge committed
1678

1679
1680
1681
        ```python
        >>> from transformers import PerceiverForOpticalFlow
        >>> import torch
NielsRogge's avatar
NielsRogge committed
1682

Sylvain Gugger's avatar
Sylvain Gugger committed
1683
        >>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")
NielsRogge's avatar
NielsRogge committed
1684

1685
1686
1687
1688
1689
1690
1691
1692
        >>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel,
        >>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels)
        >>> # patches have shape (batch_size, num_frames, num_channels, height, width)
        >>> # the authors train on resolutions of 368 x 496
        >>> patches = torch.randn(1, 2, 27, 368, 496)
        >>> outputs = model(inputs=patches)
        >>> logits = outputs.logits
        ```"""
NielsRogge's avatar
NielsRogge committed
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            raise NotImplementedError("Optical flow training is not yet supported")

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


@add_start_docstrings(
    """
Example use of Perceiver for multimodal (video) autoencoding, for tasks such as Kinetics-700.

Sylvain Gugger's avatar
Sylvain Gugger committed
1726
1727
1728
1729
1730
[`PerceiverForMultimodalAutoencoding`] uses [`~models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor`] to
preprocess the 3 modalities: images, audio and class labels. This preprocessor uses modality-specific preprocessors to
preprocess every modality separately, after which they are concatenated. Trainable position embeddings are used to pad
each modality to the same number of channels to make concatenation along the time dimension possible. Next, one applies
the Perceiver encoder.
NielsRogge's avatar
NielsRogge committed
1731

Sylvain Gugger's avatar
Sylvain Gugger committed
1732
1733
1734
1735
1736
1737
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] is used to decode the latent representation of
[`PerceiverModel`]. This decoder uses each modality-specific decoder to construct queries. The decoder queries are
created based on the inputs after preprocessing. However, autoencoding an entire video in a single forward pass is
computationally infeasible, hence one only uses parts of the decoder queries to do cross-attention with the latent
representation. This is determined by the subsampled indices for each modality, which can be provided as additional
input to the forward pass of [`PerceiverForMultimodalAutoencoding`].
NielsRogge's avatar
NielsRogge committed
1738

Sylvain Gugger's avatar
Sylvain Gugger committed
1739
1740
1741
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] also pads the decoder queries of the different
modalities to the same number of channels, in order to concatenate them along the time dimension. Next, cross-attention
is performed with the latent representation of [`PerceiverModel`].
NielsRogge's avatar
NielsRogge committed
1742

Sylvain Gugger's avatar
Sylvain Gugger committed
1743
1744
1745
Finally, [`~models.perceiver.modeling_perceiver.PerceiverMultiModalPostprocessor`] is used to turn this tensor into an
actual video. It first splits up the output into the different modalities, and then applies the respective
postprocessor for each modality.
NielsRogge's avatar
NielsRogge committed
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871

Note that, by masking the classification label during evaluation (i.e. simply providing a tensor of zeros for the
"label" modality), this auto-encoding model becomes a Kinetics 700 video classifier.
""",
    PERCEIVER_START_DOCSTRING,
)
class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        n_audio_samples = config.num_frames * config.audio_samples_per_frame

        input_preprocessor = PerceiverMultimodalPreprocessor(
            min_padding_size=4,
            modalities={
                "audio": PerceiverAudioPreprocessor(
                    config,
                    position_encoding_type="fourier",
                    fourier_position_encoding_kwargs=dict(
                        num_bands=192,
                        max_resolution=(n_audio_samples,),
                        sine_only=False,
                        concat_pos=True,
                    ),
                    prep_type="patches",
                    samples_per_patch=config.samples_per_patch,
                ),
                "image": PerceiverImagePreprocessor(
                    config,
                    position_encoding_type="fourier",
                    fourier_position_encoding_kwargs=dict(
                        num_bands=32,
                        max_resolution=(config.num_frames, config.image_size, config.image_size),
                        sine_only=False,
                        concat_pos=True,
                    ),
                    prep_type="patches",
                    spatial_downsample=4,
                    temporal_downsample=1,
                ),
                "label": PerceiverOneHotPreprocessor(config),
            },
            mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0},
        )

        image_decoder = PerceiverBasicVideoAutoencodingDecoder(
            config,
            # Autoencoding, don't pass inputs to the queries.
            concat_preprocessed_input=False,
            output_shape=config.output_shape,
            output_num_channels=512,
            use_query_residual=False,
            position_encoding_only=True,
            position_encoding_type="fourier",
            fourier_position_encoding_kwargs=dict(
                num_bands=32,
                max_resolution=(config.num_frames, config.image_size, config.image_size),
                sine_only=False,
                concat_pos=True,
            ),
        )

        decoder = PerceiverMultimodalDecoder(
            config,
            # Autoencoding, don't pass inputs to the queries.
            concat_preprocessed_input=False,
            # Modality specific decoders are used ONLY to generate queries.
            # All modalties are decoded together using a unified decoder.
            modalities={
                "audio": PerceiverBasicDecoder(
                    config,
                    # Autoencoding, don't pass inputs to the queries.
                    concat_preprocessed_input=False,
                    output_index_dims=(n_audio_samples // config.samples_per_patch,),
                    output_num_channels=512,
                    use_query_residual=False,
                    position_encoding_only=True,
                    position_encoding_type="fourier",
                    fourier_position_encoding_kwargs=dict(
                        num_bands=192,
                        max_resolution=(n_audio_samples,),
                        sine_only=False,
                        concat_pos=True,
                    ),
                ),
                "image": image_decoder,
                "label": PerceiverClassificationDecoder(
                    config,
                    # Autoencoding, don't pass inputs to the queries.
                    concat_preprocessed_input=False,
                    use_query_residual=False,
                    position_encoding_only=True,
                    position_encoding_type="trainable",
                    trainable_position_encoding_kwargs=dict(
                        num_channels=1024,
                        index_dims=1,
                    ),
                ),
            },
            num_outputs=None,
            output_num_channels=512,
            use_query_residual=False,
        )

        output_postprocessor = PerceiverMultimodalPostprocessor(
            modalities={
                "audio": PerceiverAudioPostprocessor(config, in_channels=512),
                "image": PerceiverProjectionPostprocessor(in_channels=512, out_channels=3),
                "label": PerceiverClassificationPostprocessor(config, in_channels=512),
            }
        )

        self.perceiver = PerceiverModel(
            config,
            input_preprocessor=input_preprocessor,
            decoder=decoder,
            output_postprocessor=output_postprocessor,
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
1872
1873
1874
1875
1876
1877
1878
1879
1880
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        subsampled_output_points: Optional[Dict[str, torch.tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, PerceiverClassifierOutput]:
NielsRogge's avatar
NielsRogge committed
1881
        r"""
1882
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1883
1884
1885
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
NielsRogge's avatar
NielsRogge committed
1886
1887
1888

        Returns:

1889
        Examples:
NielsRogge's avatar
NielsRogge committed
1890

1891
1892
1893
        ```python
        >>> from transformers import PerceiverForMultimodalAutoencoding
        >>> import torch
NielsRogge's avatar
NielsRogge committed
1894
        >>> import numpy as np
NielsRogge's avatar
NielsRogge committed
1895

NielsRogge's avatar
NielsRogge committed
1896
        >>> # create multimodal inputs
1897
1898
1899
        >>> images = torch.randn((1, 16, 3, 224, 224))
        >>> audio = torch.randn((1, 30720, 1))
        >>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700)))
NielsRogge's avatar
NielsRogge committed
1900

Sylvain Gugger's avatar
Sylvain Gugger committed
1901
        >>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver")
NielsRogge's avatar
NielsRogge committed
1902

NielsRogge's avatar
NielsRogge committed
1903
1904
1905
1906
1907
1908
1909
1910
        >>> # in the Perceiver IO paper, videos are auto-encoded in chunks
        >>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries
        >>> nchunks = 128
        >>> image_chunk_size = np.prod((16, 224, 224)) // nchunks
        >>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks
        >>> # process the first chunk
        >>> chunk_idx = 0
        >>> subsampling = {
Sylvain Gugger's avatar
Sylvain Gugger committed
1911
1912
1913
        ...     "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)),
        ...     "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)),
        ...     "label": None,
NielsRogge's avatar
NielsRogge committed
1914
1915
1916
        ... }

        >>> outputs = model(inputs=inputs, subsampled_output_points=subsampling)
1917
1918
        >>> logits = outputs.logits
        ```"""
NielsRogge's avatar
NielsRogge committed
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.perceiver(
            inputs=inputs,
            attention_mask=attention_mask,
            subsampled_output_points=subsampled_output_points,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits if return_dict else outputs[0]

        loss = None
        if labels is not None:
            raise NotImplementedError("Multimodal autoencoding training is not yet supported")

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return PerceiverClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )


# Below: position encodings


def build_position_encoding(
    position_encoding_type,
    out_channels=None,
    project_pos_dim=-1,
    trainable_position_encoding_kwargs=None,
    fourier_position_encoding_kwargs=None,
):
    """
    Builds the position encoding.

    Args:

    - out_channels: refers to the number of channels of the position encodings.
    - project_pos_dim: if specified, will project the position encodings to this dimension.

    """

    if position_encoding_type == "trainable":
        if not trainable_position_encoding_kwargs:
            raise ValueError("Make sure to pass trainable_position_encoding_kwargs")
        output_pos_enc = PerceiverTrainablePositionEncoding(**trainable_position_encoding_kwargs)
    elif position_encoding_type == "fourier":
        # We don't use the index_dims argument, as this is only known during the forward pass
        if not fourier_position_encoding_kwargs:
            raise ValueError("Make sure to pass fourier_position_encoding_kwargs")
        output_pos_enc = PerceiverFourierPositionEncoding(**fourier_position_encoding_kwargs)
    else:
        raise ValueError(f"Unknown position encoding type: {position_encoding_type}.")

    # Optionally, project the position encoding to a target dimension:
    positions_projection = nn.Linear(out_channels, project_pos_dim) if project_pos_dim > 0 else nn.Identity()

    return output_pos_enc, positions_projection


# Below: Perceiver decoders


class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta):
    """Perceiver abstract decoder."""

    @abc.abstractmethod
    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        raise NotImplementedError

    @property
    @abc.abstractmethod
    def num_query_channels(self):
        raise NotImplementedError

    @abc.abstractmethod
    def forward(self, query, z, query_mask=None):
        raise NotImplementedError


class PerceiverProjectionDecoder(PerceiverAbstractDecoder):
2008
2009
2010
2011
2012
2013
2014
    """
    Baseline projection decoder (no cross-attention).

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """
NielsRogge's avatar
NielsRogge committed
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032

    def __init__(self, config):
        super().__init__()
        self.classifier = nn.Linear(config.d_latents, config.num_labels)

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        return None

    def forward(self, query, z, query_mask=None):
        # (batch_size, num_latents, d_latents) -> (batch_size, d_latents)
        z = torch.mean(z, dim=1)
        # (batch_size, d_latents) -> (batch_size, config.num_labels)
        logits = self.classifier(z)
        return logits


class PerceiverBasicDecoder(PerceiverAbstractDecoder):
    """
2033
2034
    Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a
    cross-attention operation, in which the latents produce keys and values.
NielsRogge's avatar
NielsRogge committed
2035

2036
    The shape of the output of this class depends on how one defines the output queries (also called decoder queries).
NielsRogge's avatar
NielsRogge committed
2037

2038
    Args:
2039
        config ([*PerceiverConfig*]):
2040
            Model configuration.
2041
        output_num_channels (`int`, *optional*):
2042
            The number of channels in the output. Will only be used in case *final_project* is set to `True`.
2043
        position_encoding_type (`str`, *optional*, defaults to "trainable"):
2044
            The type of position encoding to use. Can be either "trainable", "fourier", or "none".
2045
        output_index_dims (`int`, *optional*):
2046
            The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'.
2047
        num_channels (`int`, *optional*):
2048
            The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'.
2049
        qk_channels (`int`, *optional*):
2050
            The number of channels of the queries and keys in the cross-attention layer.
2051
        v_channels (`int`, *optional*, defaults to 128):
2052
            The number of channels of the values in the cross-attention layer.
2053
        num_heads (`int`, *optional*, defaults to 1):
2054
            The number of attention heads in the cross-attention layer.
2055
        widening_factor (`int`, *optional*, defaults to 1):
2056
            The widening factor of the cross-attention layer.
2057
        use_query_residual (`bool`, *optional*, defaults to `False`):
2058
            Whether to use a residual connection between the query and the output of the cross-attention layer.
2059
        concat_preprocessed_input (`bool`, *optional*, defaults to `False`):
2060
            Whether to concatenate the preprocessed input to the query.
2061
        final_project (`bool`, *optional*, defaults to `True`):
2062
            Whether to project the output of the cross-attention layer to a target dimension.
2063
        position_encoding_only (`bool`, *optional*, defaults to `False`):
2064
            Whether to only use this class to define output queries.
NielsRogge's avatar
NielsRogge committed
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
    """

    def __init__(
        self,
        config,
        output_num_channels,
        position_encoding_type="trainable",
        # The following 2 arguments are ignored if position_encoding_type == 'none':
        output_index_dims=None,
        num_channels=128,
        subsampled_index_dims=None,
        qk_channels=None,
        v_channels=None,
        num_heads=1,
        widening_factor=1,
        use_query_residual=False,
        concat_preprocessed_input=False,
        final_project=True,
        position_encoding_only=False,
        **position_encoding_kwargs,
    ):
        super().__init__()

        self.output_num_channels = output_num_channels
        # If `none`, the decoder will not construct any position encodings.
        # You should construct your own when quering the decoder.
        self.output_position_encodings = None
        self.position_encoding_type = position_encoding_type
        self.position_encoding_kwargs = position_encoding_kwargs
        if position_encoding_type != "none":
            self.output_position_encodings, self.positions_projection = build_position_encoding(
                position_encoding_type=position_encoding_type, **position_encoding_kwargs
            )

        self.output_index_dims = output_index_dims
        self.num_channels = num_channels
        if subsampled_index_dims is None:
            subsampled_index_dims = output_index_dims
        self.subsampled_index_dims = subsampled_index_dims
        self.concat_preprocessed_input = concat_preprocessed_input
        self.final_project = final_project
        self.position_encoding_only = position_encoding_only

        # for multimodal autoencoding, we don't need the decoder cross-attention and final layer
        # so then we will set position_encoding_only to True
        if not self.position_encoding_only:
            self.decoding_cross_attention = PerceiverLayer(
                config,
                is_cross_attention=True,
                qk_channels=qk_channels,
                v_channels=v_channels,
                num_heads=num_heads,
                q_dim=num_channels,
                kv_dim=config.d_latents,
                widening_factor=widening_factor,
                use_query_residual=use_query_residual,
            )
            self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity()

    @property
    def num_query_channels(self) -> int:
        if self.position_encoding_type == "none":  # Queries come from elsewhere
            raise ValueError(
                "You cannot calculate number of decoder query channels when position_encoding_type is set to none"
            )
        if self.position_encoding_only:
            if "project_pos_dim" in self.position_encoding_kwargs:
                return self.position_encoding_kwargs["project_pos_dim"]
            return self.output_position_encodings.output_size()
        if self.final_project:
            return self.output_num_channels
        return self.num_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        if self.position_encoding_type == "none":  # Queries come from elsewhere
            raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none")
        if subsampled_points is not None:
            # subsampled_points are the indices if the inputs would be flattened
            # however, the inputs aren't flattened, that's why we use unravel_index
            # to get the indices for the unflattened array
            # unravel_index returns a tuple (x_idx, y_idx, ...)
            # stack to get the [n, d] tensor of coordinates
2147
2148
2149
            indices = list(
                torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)
            )
NielsRogge's avatar
NielsRogge committed
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
            pos = torch.stack(indices, dim=1)
            batch_size = inputs.shape[0]
            # Map these coordinates to [-1, 1]
            pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :]
            pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]])
            # Construct the position encoding.
            if self.position_encoding_type == "trainable":
                pos_emb = self.output_position_encodings(batch_size)
            elif self.position_encoding_type == "fourier":
                pos_emb = self.output_position_encodings(
                    self.output_index_dims, batch_size=batch_size, device=inputs.device, pos=pos
                )

            # Optionally project them to a target dimension.
            pos_emb = self.positions_projection(pos_emb)
            pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]])
        else:
            batch_size = inputs.shape[0]
            index_dims = inputs.shape[2:]

            # Construct the position encoding.
            if self.position_encoding_type == "trainable":
                pos_emb = self.output_position_encodings(batch_size)
            elif self.position_encoding_type == "fourier":
                pos_emb = self.output_position_encodings(index_dims, batch_size, device=inputs.device)

            # Optionally project them to a target dimension.
            pos_emb = self.positions_projection(pos_emb)

        if self.concat_preprocessed_input:
            if inputs_without_pos is None:
                raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True")
            pos_emb = torch.cat([inputs_without_pos, pos_emb], div=-1)

        return pos_emb

    def forward(self, query, z, query_mask=None, output_attentions=False):
        # Cross-attention decoding.
        # key, value: B x N x K; query: B x M x K
        # Attention maps -> B x N x M
        # Output -> B x M x K
        cross_attentions = () if output_attentions else None

        layer_outputs = self.decoding_cross_attention(
            query,
            attention_mask=query_mask,
            head_mask=None,
            inputs=z,
            inputs_mask=None,
            output_attentions=output_attentions,
        )
        output = layer_outputs[0]

        if output_attentions:
            cross_attentions = cross_attentions + (layer_outputs[1],)

        logits = self.final_layer(output)

        return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions)


class PerceiverClassificationDecoder(PerceiverAbstractDecoder):
    """
2213
2214
2215
2216
2217
2218
2219
    Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output.
    Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of
    shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels).

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
NielsRogge's avatar
NielsRogge committed
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
    """

    def __init__(self, config, **decoder_kwargs):
        super().__init__()

        self.num_labels = config.num_labels
        self.decoder = PerceiverBasicDecoder(
            config,
            output_num_channels=self.num_labels,
            output_index_dims=1,  # Predict a single logit array.
            **decoder_kwargs,
        )

    @property
    def num_query_channels(self) -> int:
        return self.decoder.num_query_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        return self.decoder.decoder_query(
            inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points
        )

    def forward(self, query, z, query_mask=None, output_attentions=False):
        decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)

        # B x 1 x num_classes -> B x num_classes
        logits = decoder_outputs.logits[:, 0, :]

        return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)


class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder):
    """Cross-attention based optical flow decoder."""

    def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs):
        super().__init__()

        self.output_image_shape = output_image_shape
        self.output_num_channels = output_num_channels
        self.rescale_factor = rescale_factor
        self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs)

    @property
    def num_query_channels(self) -> int:
        return self.decoder.num_query_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        if subsampled_points is not None:
            raise ValueError("FlowDecoder doesn't support subsampling yet.")
        return inputs

    def forward(self, query, z, query_mask=None, output_attentions=False):
        decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
        preds = decoder_outputs.logits
        # Output flow and rescale.
        preds /= self.rescale_factor
        preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]])
        return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions)


class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder):
    """
2282
    Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video
2283
2284
2285
    reshaping logic.

    Args:
2286
        config ([*PerceiverConfig*]):
2287
            Model configuration.
2288
        output_shape (`List[int]`):
2289
            Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension.
2290
        position_encoding_type (`str`):
2291
            The type of position encoding to use. Can be either "trainable", "fourier", or "none".
NielsRogge's avatar
NielsRogge committed
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
    """

    def __init__(self, config, output_shape, position_encoding_type, **decoder_kwargs):
        super().__init__()
        if len(output_shape) != 4:  # B, T, H, W
            raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.")
        # Build the decoder components:
        self.output_shape = output_shape
        self.output_num_channels = decoder_kwargs["output_num_channels"]

        self.decoder = PerceiverBasicDecoder(
            config,
            output_index_dims=self.output_shape[1:4],  # T*H*W
            position_encoding_type=position_encoding_type,
            **decoder_kwargs,
        )

    @property
    def num_query_channels(self) -> int:
        return self.decoder.num_query_channels

    def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
        return self.decoder.decoder_query(
            inputs,
            modality_sizes=modality_sizes,
            inputs_without_pos=inputs_without_pos,
            subsampled_points=subsampled_points,
        )

    def forward(self, query, z, query_mask=None):
        decoder_outputs = self.decoder(query, z)
        logits = decoder_outputs.logits

        logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]])
        return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)


def restructure(modality_sizes: ModalitySizeType, inputs: torch.Tensor) -> Mapping[str, torch.Tensor]:
    """
    Partitions a [B, N, C] tensor into tensors for each modality.

    Args:
        modality_sizes
            dict specifying the size of the modality
        inputs:
            input tensor

    Returns:
        dict mapping name of modality to its associated tensor.
    """
    outputs = {}
    index = 0
    # Apply a predictable ordering to the modalities
    for modality in sorted(modality_sizes.keys()):
        size = modality_sizes[modality]
        inp = inputs[:, index : index + size]
        index += size
        outputs[modality] = inp
    return outputs


class PerceiverMultimodalDecoder(PerceiverAbstractDecoder):
    """
2355
    Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary
NielsRogge's avatar
NielsRogge committed
2356
    mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that
2357
2358
2359
2360
2361
2362
    modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are
    concatenated along the time dimension.

    Next, there is a shared cross attention operation across all modalities.

    Args:
2363
        config ([*PerceiverConfig*]):
2364
            Model configuration.
2365
        modalities (`Dict[str, PerceiverAbstractDecoder]`):
2366
            Dictionary mapping modality name to the decoder of that modality.
2367
        num_outputs (`int`):
2368
            The number of outputs of the decoder.
2369
        output_num_channels (`int`):
2370
            The number of channels in the output.
2371
        min_padding_size (`int`, *optional*, defaults to 2):
2372
2373
            The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
            channels across all modalities plus min_padding_size.
2374
        subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*):
2375
2376
            Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that
            modality.
NielsRogge's avatar
NielsRogge committed
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
    """

    def __init__(
        self,
        config,
        modalities,
        num_outputs,
        output_num_channels,
        min_padding_size=2,
        subsampled_index_dims=None,
        **decoder_kwargs
    ):
        super().__init__()
        self.modalities = nn.ModuleDict(modalities)
        self.subsampled_index_dims = subsampled_index_dims
        self.min_padding_size = min_padding_size
        self.output_num_channels = output_num_channels
        self.num_outputs = num_outputs
        self.decoder = PerceiverBasicDecoder(
            config,
            output_index_dims=(num_outputs,),
            output_num_channels=output_num_channels,
            position_encoding_type="none",
            num_channels=self.num_query_channels,
            **decoder_kwargs,
        )
        self.padding = nn.ParameterDict(
            {
                modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels))
                for modality, decoder in modalities.items()
            }
        )

    @property
    def num_query_channels(self) -> int:
        max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items())
        common_channel_size = max_channel_size + self.min_padding_size
        return common_channel_size

    def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None):
        # Partition the flat inputs among the different modalities
        inputs = restructure(modality_sizes, inputs)

        # Obtain modality-specific decoders' queries
        subsampled_points = subsampled_points or dict()

        decoder_queries = dict()
        for modality, decoder in self.modalities.items():
            # Get input_without_pos for this modality if it exists.
            input_without_pos = None
            if inputs_without_pos is not None:
                input_without_pos = inputs_without_pos.get(modality, None)
            query = decoder.decoder_query(
                inputs=inputs[modality],
                modality_sizes=None,
                inputs_without_pos=input_without_pos,
                subsampled_points=subsampled_points.get(modality, None),
            )
            decoder_queries[modality] = query

        # Pad all queries with trainable position encodings to make them have the same channels

        def embed(modality, x):
            x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]])
            pos = self.padding[modality]
            pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]])
            return torch.cat([x, pos], dim=2)

        # Apply a predictable ordering to the modalities
        return torch.cat(
            [embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1
        )

    def forward(self, query, z, query_mask=None, output_attentions=False):
        # B x 1 x num_classes -> B x num_classes
        decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)

        return decoder_outputs


# Below: IO pre- and post-processor classes for Perceiver.
def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor:
    """
    Space to depth transform. Rearranges blocks of spatial data, into depth.

    This function assumes the channels to be first, but will place the channels last after transformation.

    Based on https://discuss.pytorch.org/t/is-there-any-layer-like-tensorflows-space-to-depth-function/3487/15.
    """
    if len(frames.shape) == 4:
        batch_size, num_channels, height, width = frames.shape
        # split up dimensions (height by spatial_block_size, width by spatial_block_size)
        frames = frames.view(
            batch_size,
            num_channels,
            height // spatial_block_size,
            spatial_block_size,
            width // spatial_block_size,
            spatial_block_size,
        )
        # move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C)
        frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous()
        # concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C)
        frames = frames.view(
            batch_size,
            height // spatial_block_size,
            width // spatial_block_size,
2484
            (spatial_block_size**2) * num_channels,
NielsRogge's avatar
NielsRogge committed
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
        )
        return frames
    elif len(frames.shape) == 5:
        batch_size, time, num_channels, height, width = frames.shape
        # split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size)
        frames = frames.view(
            batch_size,
            time // temporal_block_size,
            temporal_block_size,
            num_channels,
            height // spatial_block_size,
            spatial_block_size,
            width // spatial_block_size,
            spatial_block_size,
        )
        # move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C)
        frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
        # concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C)
        frames = frames.view(
            batch_size,
            time // temporal_block_size,
            height // spatial_block_size,
            width // spatial_block_size,
2508
            temporal_block_size * (spatial_block_size**2) * num_channels,
NielsRogge's avatar
NielsRogge committed
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
        )
        return frames
    else:
        raise ValueError(
            "Frames should be of rank 4 (batch, channels, height, width)"
            " or rank 5 (batch, time, channels, height, width)"
        )


class Conv2dSamePadding(nn.Conv2d):
    """
    Conv2d layer with padding="same" support. Source:
    https://gist.github.com/sumanmichael/4de9dee93f972d47c80c4ade8e149ea6
    """

    def __init__(self, *args, **kwargs):
        super(Conv2dSamePadding, self).__init__(*args, **kwargs)
        self.zero_pad_2d = nn.ZeroPad2d(
            reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]])
        )

    def forward(self, input):
        return self._conv_forward(self.zero_pad_2d(input), self.weight, self.bias)


class Conv2DDownsample(nn.Module):
    """Downsamples 4x by applying a 2D convolution and doing max pooling."""

    def __init__(
        self,
        num_layers: int = 1,
        in_channels: int = 3,
        out_channels: int = 64,
        use_batchnorm: bool = True,
    ):
        """
        Constructs a Conv2DDownsample model.

        Args:
2548
          in_channels (`int`, *optional*, defaults to 3):
NielsRogge's avatar
NielsRogge committed
2549
            The number of input channels.
2550
          out_channels (`int`, *optional*, defaults to 64):
NielsRogge's avatar
NielsRogge committed
2551
            The number of conv output channels.
2552
          use_batchnorm (`bool`, *optional*, defaults to `True`):
NielsRogge's avatar
NielsRogge committed
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
            Whether to use batchnorm.
        """
        super().__init__()

        self.conv = Conv2dSamePadding(
            in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=2, bias=False
        )
        self.batchnorm = nn.BatchNorm2d(num_features=out_channels) if use_batchnorm else nn.Identity()
        self.relu = nn.ReLU()
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        out = self.conv(inputs)
        out = self.batchnorm(out)
        out = self.relu(out)
        out = self.max_pool(out)
        return out


def generate_fourier_features(pos, num_bands, max_resolution=(224, 224), concat_pos=True, sine_only=False):
    """
    Generate a Fourier frequency position encoding with linear spacing.

    Args:
2577
      pos (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`):
NielsRogge's avatar
NielsRogge committed
2578
        The Tensor containing the position of n points in d dimensional space.
2579
      num_bands (`int`):
NielsRogge's avatar
NielsRogge committed
2580
        The number of frequency bands (K) to use.
2581
      max_resolution (`Tuple[int]`, *optional*, defaults to (224, 224)):
NielsRogge's avatar
NielsRogge committed
2582
        The maximum resolution (i.e. the number of pixels per dim). A tuple representing resolution for each dimension.
2583
      concat_pos (`bool`, *optional*, defaults to `True`):
NielsRogge's avatar
NielsRogge committed
2584
        Whether to concatenate the input position encoding to the Fourier features.
2585
      sine_only (`bool`, *optional*, defaults to `False`):
NielsRogge's avatar
NielsRogge committed
2586
2587
2588
        Whether to use a single phase (sin) or two (sin/cos) for each frequency band.

    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2589
      `torch.FloatTensor` of shape `(batch_size, sequence_length, n_channels)`: The Fourier position embeddings. If
2590
      `concat_pos` is `True` and `sine_only` is `False`, output dimensions are ordered as: [dim_1, dim_2, ..., dim_d,
Sylvain Gugger's avatar
Sylvain Gugger committed
2591
2592
2593
      sin(pi*f_1*dim_1), ..., sin(pi*f_K*dim_1), ..., sin(pi*f_1*dim_d), ..., sin(pi*f_K*dim_d), cos(pi*f_1*dim_1),
      ..., cos(pi*f_K*dim_1), ..., cos(pi*f_1*dim_d), ..., cos(pi*f_K*dim_d)], where dim_i is pos[:, i] and f_k is the
      kth frequency band.
NielsRogge's avatar
NielsRogge committed
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
    """

    batch_size = pos.shape[0]

    min_freq = 1.0
    # Nyquist frequency at the target resolution:
    freq_bands = torch.stack(
        [torch.linspace(start=min_freq, end=res / 2, steps=num_bands) for res in max_resolution], dim=0
    )

    # Get frequency bands for each spatial dimension.
    # Output is size [n, d * num_bands]
    per_pos_features = pos[0, :, :][:, :, None] * freq_bands[None, :, :]
    per_pos_features = torch.reshape(per_pos_features, [-1, np.prod(per_pos_features.shape[1:])])

    if sine_only:
        # Output is size [n, d * num_bands]
        per_pos_features = torch.sin(np.pi * (per_pos_features))
    else:
        # Output is size [n, 2 * d * num_bands]
        per_pos_features = torch.cat(
            [torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1
        )
    # Concatenate the raw input positions.
    if concat_pos:
        # Adds d bands to the encoding.
        per_pos_features = torch.cat([pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1)
    return per_pos_features


def build_linear_positions(index_dims, output_range=(-1.0, 1.0)):
    """
    Generate an array of position indices for an N-D input array.

    Args:
2629
      index_dims (`List[int]`):
NielsRogge's avatar
NielsRogge committed
2630
        The shape of the index dimensions of the input array.
2631
      output_range (`Tuple[float]`, *optional*, defaults to `(-1.0, 1.0)`):
NielsRogge's avatar
NielsRogge committed
2632
2633
2634
        The min and max values taken by each input index dimension.

    Returns:
2635
      `torch.FloatTensor` of shape `(index_dims[0], index_dims[1], .., index_dims[-1], N)`.
NielsRogge's avatar
NielsRogge committed
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
    """

    def _linspace(n_xels_per_dim):
        return torch.linspace(start=output_range[0], end=output_range[1], steps=n_xels_per_dim, dtype=torch.float32)

    dim_ranges = [_linspace(n_xels_per_dim) for n_xels_per_dim in index_dims]
    array_index_grid = torch.meshgrid(*dim_ranges)

    return torch.stack(array_index_grid, dim=-1)


class PerceiverAbstractPositionEncoding(nn.Module, metaclass=abc.ABCMeta):
    """Perceiver abstract position encoding."""

    @property
    @abc.abstractmethod
    def num_dimensions(self) -> int:
        raise NotImplementedError

    @abc.abstractmethod
    def output_size(self, *args, **kwargs) -> int:
        raise NotImplementedError

    @abc.abstractmethod
    def forward(self, batch_size, pos):
        raise NotImplementedError


class PerceiverTrainablePositionEncoding(PerceiverAbstractPositionEncoding):
    """Trainable position encoding."""

    def __init__(self, index_dims, num_channels=128):
        super().__init__()
        self._num_channels = num_channels
        self._index_dims = index_dims
        index_dim = np.prod(index_dims)
        self.position_embeddings = nn.Parameter(torch.randn(index_dim, num_channels))

    @property
    def num_dimensions(self) -> int:
        if isinstance(self._index_dims, int):
            return 1
        return len(self._index_dims)

    def output_size(self, *args, **kwargs) -> int:
        return self._num_channels

    def forward(self, batch_size):
        position_embeddings = self.position_embeddings

        if batch_size is not None:
            position_embeddings = position_embeddings.expand(batch_size, -1, -1)
        return position_embeddings


def _check_or_build_spatial_positions(pos, index_dims, batch_size):
    """
    Checks or builds spatial position features (x, y, ...).

    Args:
2696
      pos (`torch.FloatTensor`):
NielsRogge's avatar
NielsRogge committed
2697
        None, or an array of position features. If None, position features are built. Otherwise, their size is checked.
2698
      index_dims (`List[int]`):
NielsRogge's avatar
NielsRogge committed
2699
        An iterable giving the spatial/index size of the data to be featurized.
2700
      batch_size (`int`):
NielsRogge's avatar
NielsRogge committed
2701
2702
2703
        The batch size of the data to be featurized.

    Returns:
2704
        `torch.FloatTensor` of shape `(batch_size, prod(index_dims))` an array of position features.
NielsRogge's avatar
NielsRogge committed
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
    """
    if pos is None:
        pos = build_linear_positions(index_dims)
        pos = torch.broadcast_to(pos[None], (batch_size,) + pos.shape)
        pos = torch.reshape(pos, [batch_size, np.prod(index_dims), -1])
    else:
        # Just a warning label: you probably don't want your spatial features to
        # have a different spatial layout than your pos coordinate system.
        # But feel free to override if you think it'll work!
        if pos.shape[-1] != len(index_dims):
            raise ValueError("Spatial features have the wrong number of dimensions.")
    return pos


class PerceiverFourierPositionEncoding(PerceiverAbstractPositionEncoding):
    """Fourier (Sinusoidal) position encoding."""

    def __init__(self, num_bands, max_resolution, concat_pos=True, sine_only=False):
        super().__init__()
        self.num_bands = num_bands
        self.max_resolution = max_resolution
        self.concat_pos = concat_pos
        self.sine_only = sine_only

    @property
    def num_dimensions(self) -> int:
        return len(self.max_resolution)

    def output_size(self):
        """Returns size of positional encodings last dimension."""
        num_dims = len(self.max_resolution)
        encoding_size = self.num_bands * num_dims
        if not self.sine_only:
            encoding_size *= 2
        if self.concat_pos:
            encoding_size += self.num_dimensions

        return encoding_size

    def forward(self, index_dims, batch_size, device, pos=None):
        pos = _check_or_build_spatial_positions(pos, index_dims, batch_size)
        fourier_pos_enc = generate_fourier_features(
            pos,
            num_bands=self.num_bands,
            max_resolution=self.max_resolution,
            concat_pos=self.concat_pos,
            sine_only=self.sine_only,
        ).to(device)
        return fourier_pos_enc


class AbstractPreprocessor(nn.Module):
    @property
    def num_channels(self) -> int:
        """Returns size of preprocessor output."""
        raise NotImplementedError()


class PerceiverTextPreprocessor(AbstractPreprocessor):
2764
2765
2766
2767
2768
2769
2770
2771
2772
    """
    Text preprocessing for Perceiver Encoder. Can be used to embed `inputs` and add positional encodings.

    The dimensionality of the embeddings is determined by the `d_model` attribute of the configuration.

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """
NielsRogge's avatar
NielsRogge committed
2773
2774
2775

    def __init__(self, config):
        super().__init__()
NielsRogge's avatar
NielsRogge committed
2776
        self.config = config
NielsRogge's avatar
NielsRogge committed
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
        self.embeddings = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.d_model)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)

    @property
    def num_channels(self) -> int:
        return self.config.d_model

    def forward(self, inputs):
        embeddings = self.embeddings(inputs)

        seq_length = inputs.shape[1]
        position_ids = torch.arange(0, seq_length, device=inputs.device)
        embeddings = embeddings + self.position_embeddings(position_ids)

        return embeddings, None, None


class PerceiverEmbeddingDecoder(nn.Module):
2795
2796
2797
2798
2799
2800
2801
    """
    Module to decode embeddings (for masked language modeling).

    Args:
        config ([`PerceiverConfig`]):
            Model configuration.
    """
NielsRogge's avatar
NielsRogge committed
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size
        self.bias = nn.Parameter(torch.zeros(self.vocab_size))

    def forward(self, hidden_states, embedding_layer):
        batch_size, seq_len, d_model = hidden_states.shape
        output = torch.matmul(hidden_states.reshape([-1, d_model]), embedding_layer.weight.T)  # Flatten batch dim
        output = output + self.bias

        return output.reshape([batch_size, seq_len, self.vocab_size])


class PerceiverMultimodalPostprocessor(nn.Module):
    """
2819
2820
    Multimodal postprocessing for Perceiver. Can be used to combine modality-specific postprocessors into a single
    postprocessor.
NielsRogge's avatar
NielsRogge committed
2821
2822

    Args:
2823
          modalities (`Dict[str, PostprocessorType]`):
NielsRogge's avatar
NielsRogge committed
2824
            Dictionary mapping modality name to postprocessor class for that modality.
2825
          input_is_dict (`bool`, *optional*, defaults to `False`):
NielsRogge's avatar
NielsRogge committed
2826
            If True, input is assumed to be dictionary structured, and outputs keep the same dictionary shape. If
2827
            False, input is a tensor which is sliced up during postprocessing by *modality_sizes*.
NielsRogge's avatar
NielsRogge committed
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
    """

    def __init__(self, modalities: Mapping[str, PostprocessorType], input_is_dict: bool = False):
        super().__init__()
        self.modalities = nn.ModuleDict(modalities)
        self.input_is_dict = input_is_dict

    def forward(
        self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None
    ) -> Mapping[str, torch.Tensor]:
        if not self.input_is_dict:
            # Slice up modalities by their sizes.
            if modality_sizes is None:
                raise ValueError("Modality sizes should be specified if input is not a dictionary.")
            inputs = restructure(modality_sizes=modality_sizes, inputs=inputs)

        outputs = {
            modality: postprocessor(inputs[modality], pos=pos, modality_sizes=None)
            for modality, postprocessor in self.modalities.items()
        }
        return outputs


class PerceiverClassificationPostprocessor(nn.Module):
    """
    Classification postprocessing for Perceiver. Can be used to convert the decoder output to classification logits.

    Args:
2856
        config ([*PerceiverConfig*]):
NielsRogge's avatar
NielsRogge committed
2857
            Model configuration.
2858
        in_channels (`int`):
NielsRogge's avatar
NielsRogge committed
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
            Number of channels in the input.
    """

    def __init__(self, config, in_channels):
        super().__init__()
        self.classifier = nn.Linear(in_channels, config.num_labels)

    def forward(self, inputs, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
        logits = self.classifier(inputs)
        return logits[:, 0, :]


class PerceiverAudioPostprocessor(nn.Module):
    """
    Audio postprocessing for Perceiver. Can be used to convert the decoder output to audio features.

    Args:
2876
        config ([*PerceiverConfig*]):
NielsRogge's avatar
NielsRogge committed
2877
            Model configuration.
2878
        in_channels (`int`):
NielsRogge's avatar
NielsRogge committed
2879
            Number of channels in the input.
2880
        postproc_type (`str`, *optional*, defaults to `"patches"`):
NielsRogge's avatar
NielsRogge committed
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
            Postprocessor type to use. Currently, only "patches" is supported.
    """

    def __init__(self, config, in_channels, postproc_type: str = "patches"):
        super().__init__()

        if postproc_type not in ("patches",):  # to be supported: 'conv', 'patches', 'pixels'
            raise ValueError("Invalid postproc_type!")

        # Architecture parameters:
        self.classifier = nn.Linear(in_channels, config.samples_per_patch)

    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:

        logits = self.classifier(inputs)
        return torch.reshape(logits, [inputs.shape[0], -1])


class PerceiverProjectionPostprocessor(nn.Module):
    """
2901
2902
    Projection postprocessing for Perceiver. Can be used to project the channels of the decoder output to a lower
    dimension.
NielsRogge's avatar
NielsRogge committed
2903
2904

    Args:
2905
        in_channels (`int`):
NielsRogge's avatar
NielsRogge committed
2906
            Number of channels in the input.
2907
        out_channels (`int`):
NielsRogge's avatar
NielsRogge committed
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
            Number of channels in the output.
    """

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.classifier = nn.Linear(in_channels, out_channels)

    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
        logits = self.classifier(inputs)
        return logits


class PerceiverImagePreprocessor(AbstractPreprocessor):
    """
    Image preprocessing for Perceiver Encoder.

2924
2925
2926
    Note: the *out_channels* argument refers to the output channels of a convolutional layer, if *prep_type* is set to
    "conv1x1" or "conv". If one adds absolute position embeddings, one must make sure the *num_channels* of the
    position encoding kwargs are set equal to the *out_channels*.
NielsRogge's avatar
NielsRogge committed
2927
2928

    Args:
2929
        config ([*PerceiverConfig*]):
NielsRogge's avatar
NielsRogge committed
2930
            Model configuration.
2931
        prep_type (`str`, *optional*, defaults to `"conv"`):
NielsRogge's avatar
NielsRogge committed
2932
            Preprocessing type. Can be "conv1x1", "conv", "patches", "pixels".
2933
        spatial_downsample (`int`, *optional*, defaults to 4):
NielsRogge's avatar
NielsRogge committed
2934
            Spatial downsampling factor.
2935
        temporal_downsample (`int`, *optional*, defaults to 1):
NielsRogge's avatar
NielsRogge committed
2936
            Temporal downsampling factor (only relevant in case a time dimension is present).
2937
        position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
NielsRogge's avatar
NielsRogge committed
2938
            Position encoding type. Can be "fourier" or "trainable".
2939
        in_channels (`int`, *optional*, defaults to 3):
NielsRogge's avatar
NielsRogge committed
2940
            Number of channels in the input.
2941
        out_channels (`int`, *optional*, defaults to 64):
NielsRogge's avatar
NielsRogge committed
2942
            Number of channels in the output.
2943
        conv_after_patching (`bool`, *optional*, defaults to `False`):
NielsRogge's avatar
NielsRogge committed
2944
            Whether to apply a convolutional layer after patching.
2945
        conv_after_patching_in_channels (`int`, *optional*, defaults to 54):
NielsRogge's avatar
NielsRogge committed
2946
            Number of channels in the input of the convolutional layer after patching.
2947
        conv2d_use_batchnorm (`bool`, *optional*, defaults to `True`):
NielsRogge's avatar
NielsRogge committed
2948
            Whether to use batch normalization in the convolutional layer.
2949
        concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
NielsRogge's avatar
NielsRogge committed
2950
            How to concatenate the position encoding to the input. Can be "concat" or "add".
2951
        project_pos_dim (`int`, *optional*, defaults to -1):
NielsRogge's avatar
NielsRogge committed
2952
            Dimension of the position encoding to project to. If -1, no projection is applied.
2953
        **position_encoding_kwargs (`Dict`, *optional*):
NielsRogge's avatar
NielsRogge committed
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
            Keyword arguments for the position encoding.
    """

    def __init__(
        self,
        config,
        prep_type="conv",
        spatial_downsample: int = 4,
        temporal_downsample: int = 1,
        position_encoding_type: str = "fourier",
        in_channels: int = 3,
        out_channels: int = 64,
        conv_after_patching: bool = False,
        conv_after_patching_in_channels: int = 54,  # only relevant when conv_after_patching = True
        conv2d_use_batchnorm: bool = True,
        concat_or_add_pos: str = "concat",
        project_pos_dim: int = -1,
        **position_encoding_kwargs,
    ):
        super().__init__()
        self.config = config

        if prep_type not in ("conv", "patches", "pixels", "conv1x1"):
            raise ValueError(f"Prep_type {prep_type} is invalid")

        if concat_or_add_pos not in ["concat", "add"]:
            raise ValueError(f"Invalid value {concat_or_add_pos} for concat_or_add_pos.")

        self.in_channels = in_channels
        self.prep_type = prep_type
        self.spatial_downsample = spatial_downsample
        self.temporal_downsample = temporal_downsample
        self.position_encoding_type = position_encoding_type
        self.concat_or_add_pos = concat_or_add_pos
        self.conv_after_patching = conv_after_patching
        self.out_channels = out_channels

        if self.prep_type == "conv":
            # Downsampling with conv is currently restricted
            convnet_num_layers = math.log(spatial_downsample, 4)
            convnet_num_layers_is_int = convnet_num_layers == np.round(convnet_num_layers)
            if not convnet_num_layers_is_int or temporal_downsample != 1:
                raise ValueError(
                    "Only powers of 4 expected for spatial and 1 expected for temporal downsampling with conv."
                )
            self.convnet = Conv2DDownsample(
                in_channels=in_channels,
                num_layers=int(convnet_num_layers),
                out_channels=out_channels,
                use_batchnorm=conv2d_use_batchnorm,
            )

        elif self.prep_type == "conv1x1":
            if temporal_downsample != 1:
                raise ValueError("Conv1x1 does not downsample in time.")
            self.convnet_1x1 = nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(1, 1),
                # spatial_downsample is unconstrained for 1x1 convolutions.
                stride=(spatial_downsample, spatial_downsample),
            )

        # Position embeddings
        self.project_pos_dim = project_pos_dim
        self.position_embeddings, self.positions_projection = build_position_encoding(
            position_encoding_type=position_encoding_type,
            out_channels=out_channels,
            project_pos_dim=project_pos_dim,
            **position_encoding_kwargs,
        )

        # Optional convolutional layer after patches.
        self.conv_after_patches = (
            nn.Linear(conv_after_patching_in_channels, self.out_channels) if conv_after_patching else nn.Identity()
        )

    @property
    def num_channels(self) -> int:
        # Let's assume that the number of resolutions (in the context of image preprocessing)
        # of the input data is 2 or 3 depending on whether we are processing image or video respectively.
        # In this case, for convenience, we will declare is_temporal variable,
        # which will show whether the data has a temporal dimension or not.
        is_temporal = self.position_embeddings.num_dimensions > 2

        # position embedding
        if self.project_pos_dim > 0:
            pos_dim = self.project_pos_dim
        else:
            pos_dim = self.position_embeddings.output_size()
        if self.concat_or_add_pos == "add":
            return pos_dim

        # inputs
        if self.conv_after_patching or self.prep_type in ("conv1x1", "conv"):
            inp_dim = self.out_channels
        elif self.prep_type == "pixels":
            inp_dim = self.in_channels
            if not is_temporal:
                inp_dim = math.ceil(inp_dim / self.spatial_downsample)
        elif self.prep_type == "patches":
            if self.conv_after_patching:
                inp_dim = self.out_channels
            else:
3058
                inp_dim = self.in_channels * self.spatial_downsample**2
NielsRogge's avatar
NielsRogge committed
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
                if is_temporal:
                    inp_dim *= self.temporal_downsample

        return inp_dim + pos_dim

    def _build_network_inputs(self, inputs: torch.Tensor, pos: torch.Tensor, network_input_is_1d: bool = True):
        """
        Construct the final input, including position encoding.

        This method expects the inputs to always have channels as last dimension.

        """
        batch_size = inputs.shape[0]
        index_dims = inputs.shape[1:-1]
        indices = np.prod(index_dims)

        # Flatten input features to a 1D index dimension if necessary.
        if len(inputs.shape) > 3 and network_input_is_1d:
            inputs = torch.reshape(inputs, [batch_size, indices, -1])

        # Construct the position encoding.
        if self.position_encoding_type == "trainable":
            pos_enc = self.position_embeddings(batch_size)
        elif self.position_encoding_type == "fourier":
            pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device)

        # Optionally project them to a target dimension.
        pos_enc = self.positions_projection(pos_enc)

        if not network_input_is_1d:
            # Reshape pos to match the input feature shape
            # if the network takes non-1D inputs
            sh = inputs.shape
            pos_enc = torch.reshape(pos_enc, list(sh)[:-1] + [-1])
        if self.concat_or_add_pos == "concat":
            inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
        elif self.concat_or_add_pos == "add":
            inputs_with_pos = inputs + pos_enc
        return inputs_with_pos, inputs

    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
        if self.prep_type == "conv":
            # Convnet image featurization.
            # Downsamples spatially by a factor of 4
            inputs = self.convnet(inputs)

        elif self.prep_type == "conv1x1":
            # map inputs to self.out_channels
            inputs = self.convnet_1x1(inputs)

        elif self.prep_type == "pixels":
            # if requested, downsamples in the crudest way
            if inputs.ndim == 4:
                inputs = inputs[:: self.spatial_downsample, :: self.spatial_downsample]
            elif inputs.ndim == 5:
                inputs = inputs[
                    :, :: self.temporal_downsample, :, :: self.spatial_downsample, :: self.spatial_downsample
                ]
            else:
                raise ValueError("Unsupported data format for pixels.")

        elif self.prep_type == "patches":
            # Space2depth featurization.
            # Video: B x T x C x H x W
            inputs = space_to_depth(
                inputs, temporal_block_size=self.temporal_downsample, spatial_block_size=self.spatial_downsample
            )

            if inputs.ndim == 5 and inputs.shape[1] == 1:
                # for flow
                inputs = inputs.squeeze(dim=1)

            # Optionally apply conv layer.
            inputs = self.conv_after_patches(inputs)

        if self.prep_type != "patches":
            # move channels to last dimension, as the _build_network_inputs method below expects this
            if inputs.ndim == 4:
                inputs = torch.moveaxis(inputs, 1, -1)
            elif inputs.ndim == 5:
                inputs = torch.moveaxis(inputs, 2, -1)
            else:
                raise ValueError("Unsupported data format for conv1x1.")

        inputs, inputs_without_pos = self._build_network_inputs(inputs, pos, network_input_is_1d)
        modality_sizes = None  # Size for each modality, only needed for multimodal

        return inputs, modality_sizes, inputs_without_pos


class PerceiverOneHotPreprocessor(AbstractPreprocessor):
    """
    One-hot preprocessor for Perceiver Encoder. Can be used to add a dummy index dimension to the input.

    Args:
3154
        config ([`PerceiverConfig`]):
NielsRogge's avatar
NielsRogge committed
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
            Model configuration.
    """

    def __init__(self, config):
        super().__init__()
        self.config: PerceiverConfig = config

    @property
    def num_channels(self) -> int:
        return self.config.num_labels

    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
        # Add a dummy index dimension.
        inputs = inputs[:, None, :]

        # No position encodings, so the 1st (input) and 3rd (inputs_without_pos)
        # outputs are identical.
        return inputs, None, inputs


class PerceiverAudioPreprocessor(AbstractPreprocessor):
    """
    Audio preprocessing for Perceiver Encoder.

    Args:
3180
        config ([*PerceiverConfig*]):
NielsRogge's avatar
NielsRogge committed
3181
            Model configuration.
3182
        prep_type (`str`, *optional*, defaults to `"patches"`):
NielsRogge's avatar
NielsRogge committed
3183
            Preprocessor type to use. Only "patches" is supported.
3184
        samples_per_patch (`int`, *optional*, defaults to 96):
NielsRogge's avatar
NielsRogge committed
3185
            Number of samples per patch.
3186
        position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
NielsRogge's avatar
NielsRogge committed
3187
            Type of position encoding to use. Can be "trainable" or "fourier".
3188
        concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
NielsRogge's avatar
NielsRogge committed
3189
            How to concatenate the position encoding to the input. Can be "concat" or "add".
3190
        out_channels (`int`, *optional*, defaults to 64):
NielsRogge's avatar
NielsRogge committed
3191
            Number of channels in the output.
3192
        project_pos_dim (`int`, *optional*, defaults to -1):
NielsRogge's avatar
NielsRogge committed
3193
            Dimension of the position encoding to project to. If -1, no projection is applied.
3194
        **position_encoding_kwargs (`Dict`, *optional*):
NielsRogge's avatar
NielsRogge committed
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
            Keyword arguments for the position encoding.
    """

    def __init__(
        self,
        config,
        prep_type: str = "patches",
        samples_per_patch: int = 96,
        position_encoding_type: str = "fourier",
        concat_or_add_pos: str = "concat",
        out_channels=64,
        project_pos_dim=-1,
        **position_encoding_kwargs,
    ):
        super().__init__()
        self.config = config

        if prep_type not in ("patches",):
            raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.")

        if concat_or_add_pos not in ["concat", "add"]:
            raise ValueError(f"Concat_or_pos {concat_or_add_pos} is invalid, can only be 'concat' or 'add'.")

        self.samples_per_patch = samples_per_patch
        self.position_encoding_type = position_encoding_type
        self.concat_or_add_pos = concat_or_add_pos
        self.project_pos_dim = project_pos_dim

        # Position embeddings
        self.position_embeddings, self.positions_projection = build_position_encoding(
            position_encoding_type=position_encoding_type,
            out_channels=out_channels,
            project_pos_dim=project_pos_dim,
            **position_encoding_kwargs,
        )

    @property
    def num_channels(self) -> int:
        # position embedding
        if self.project_pos_dim > 0:
            pos_dim = self.project_pos_dim
        else:
            pos_dim = self.position_embeddings.output_size()
        if self.concat_or_add_pos == "add":
            return pos_dim
        return self.samples_per_patch + pos_dim

    def _build_network_inputs(self, inputs, pos):
        """Construct the final input, including position encoding."""
        batch_size = inputs.shape[0]
        index_dims = inputs.shape[1:-1]

        # Construct the position encoding.
        if self.position_encoding_type == "trainable":
            pos_enc = self.position_embeddings(batch_size)
        elif self.position_encoding_type == "fourier":
            pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device)

        # Optionally project them to a target dimension.
        pos_enc = self.positions_projection(pos_enc)

        if self.concat_or_add_pos == "concat":
            inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
        elif self.concat_or_add_pos == "add":
            inputs_with_pos = inputs + pos_enc

        return inputs_with_pos, inputs

3263
    def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
NielsRogge's avatar
NielsRogge committed
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
        inputs = torch.reshape(inputs, [inputs.shape[0], -1, self.samples_per_patch])

        inputs, inputs_without_pos = self._build_network_inputs(inputs, pos)
        modality_sizes = None  # Size for each modality, only needed for multimodal

        return inputs, modality_sizes, inputs_without_pos


class PerceiverMultimodalPreprocessor(AbstractPreprocessor):
    """
    Multimodal preprocessing for Perceiver Encoder.

    Inputs for each modality are preprocessed, then padded with trainable position embeddings to have the same number
    of channels.

    Args:
3280
        modalities (`Dict[str, PreprocessorType]`):
NielsRogge's avatar
NielsRogge committed
3281
            Dict mapping modality name to preprocessor.
3282
        mask_probs (`Dict[str, float]`):
NielsRogge's avatar
NielsRogge committed
3283
            Dict mapping modality name to masking probability of that modality.
3284
        min_padding_size (`int`, *optional*, defaults to 2):
NielsRogge's avatar
NielsRogge committed
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
            The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
            channels across all modalities plus min_padding_size.
    """

    def __init__(
        self,
        modalities: Mapping[str, PreprocessorType],
        mask_probs: Optional[Mapping[str, float]] = None,
        min_padding_size: int = 2,
    ):
        super().__init__()
        self.modalities = modalities
        self.min_padding_size = min_padding_size
        self.mask_probs = mask_probs if mask_probs is not None else dict()
        self.padding = nn.ParameterDict(
            {
                modality: nn.Parameter(torch.randn(1, self.num_channels - preprocessor.num_channels))
                for modality, preprocessor in modalities.items()
            }
        )
        self.mask = nn.ParameterDict(
            {modality: nn.Parameter(torch.randn(1, self.num_channels)) for modality, _ in self.mask_probs.items()}
        )

    @property
    def num_channels(self) -> int:
        max_channel_size = max(processor.num_channels for _, processor in self.modalities.items())
        common_channel_size = max_channel_size + self.min_padding_size
        return common_channel_size

    def forward(
        self, inputs: Mapping[str, torch.Tensor], pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True
    ) -> PreprocessorOutputType:
        padded = {}
        modality_sizes = {}
        inputs_without_pos = {}
        for modality, preprocessor in self.modalities.items():
            # preprocess each modality using the respective preprocessor.
            output, _, inputs_without_pos[modality] = preprocessor(
                inputs[modality], pos=pos, network_input_is_1d=network_input_is_1d
            )

            # pad to the same common_channel_size.
            batch_size, num_samples, num_channels = output.shape
            pos_enc = self.padding[modality].expand(batch_size, -1, -1)

            padding = torch.broadcast_to(
                pos_enc,
                [batch_size, num_samples, self.num_channels - num_channels],
            )
            output_padded = torch.cat([output, padding], dim=2)

            # mask if required
            if modality in self.mask_probs:
                mask_token = self.mask[modality].expand(batch_size, -1, -1)
                mask_prob = self.mask_probs[modality]
                mask = torch.bernoulli(torch.full([batch_size, num_samples], mask_prob))
                mask = torch.unsqueeze(mask, dim=2).to(mask_token.device)
                output_padded = (1 - mask) * output_padded + mask * mask_token

            padded[modality] = output_padded
            modality_sizes[modality] = output_padded.shape[1]

        # Apply a predictable ordering to the modalities
        padded_ls = [padded[k] for k in sorted(padded.keys())]

        # Finally, concatenate along the time dimension
        final_inputs = torch.cat(padded_ls, dim=1)

        return final_inputs, modality_sizes, inputs_without_pos