"IMG/cpio/vscode:/vscode.git/clone" did not exist on "c72f96312c1caabafff6f424aac70493d99faa38"
finetune.py 16.6 KB
Newer Older
1
2
3
4
5
import argparse
import glob
import logging
import os
import time
6
import warnings
7
from collections import defaultdict
8
9
from pathlib import Path
from typing import Dict, List, Tuple
10

11
12
import numpy as np
import pytorch_lightning as pl
13
14
15
import torch
from torch.utils.data import DataLoader

16
from lightning_base import BaseTransformer, add_generic_args, generic_train
17
from transformers import MBartTokenizer, T5ForConditionalGeneration, get_linear_schedule_with_warmup
18
19
20


try:
21
    from .utils import (
22
        assert_all_frozen,
23
24
25
26
27
        use_task_specific_params,
        lmap,
        flatten_list,
        pickle_save,
        save_git_info,
28
        save_json,
29
30
31
32
        freeze_params,
        calculate_rouge,
        get_git_info,
        ROUGE_KEYS,
33
        calculate_bleu_score,
34
35
        Seq2SeqDataset,
        MBartDataset,
36
        label_smoothed_nll_loss,
37
    )
38

39
    from .callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
40
except ImportError:
41
    from utils import (
42
43
44
        Seq2SeqDataset,
        MBartDataset,
        assert_all_frozen,
45
46
47
48
49
        use_task_specific_params,
        lmap,
        flatten_list,
        pickle_save,
        save_git_info,
50
        save_json,
51
52
53
54
        freeze_params,
        calculate_rouge,
        get_git_info,
        ROUGE_KEYS,
55
        calculate_bleu_score,
56
        label_smoothed_nll_loss,
57
    )
58
    from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
59
60
61
62

logger = logging.getLogger(__name__)


63
64
65
class SummarizationModule(BaseTransformer):
    mode = "summarization"
    loss_names = ["loss"]
66
67
    metric_names = ROUGE_KEYS
    val_metric = "rouge2"
68

69
70
71
72
    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
        use_task_specific_params(self.model, "summarization")
        save_git_info(self.hparams.output_dir)
73
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
74
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
75
        pickle_save(self.hparams, self.hparams_save_path)
76
        self.step_count = 0
77
        self.metrics = defaultdict(list)
78

79
80
81
        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
82
            prefix=self.model.config.prefix or "",
83
        )
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"

        if self.hparams.freeze_embeds:
            self.freeze_embeds()
        if self.hparams.freeze_encoder:
102
103
104
            freeze_params(self.model.get_encoder())
            assert_all_frozen(self.model.get_encoder())

105
        self.hparams.git_sha = get_git_info()["repo_sha"]
106
        self.num_workers = hparams.num_workers
107
        self.decoder_start_token_id = None
108
109
110
111
112
113
114
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
            self.model.config.decoder_start_token_id = self.decoder_start_token_id
        if isinstance(self.tokenizer, MBartTokenizer):
            self.dataset_class = MBartDataset
        else:
            self.dataset_class = Seq2SeqDataset
115
116
117

    def freeze_embeds(self):
        """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
118
        try:
119
120
121
122
            freeze_params(self.model.model.shared)
            for d in [self.model.model.encoder, self.model.model.decoder]:
                freeze_params(d.embed_positions)
                freeze_params(d.embed_tokens)
123
        except AttributeError:
124
125
126
127
128
129
130
131
132
133
            freeze_params(self.model.shared)
            for d in [self.model.encoder, self.model.decoder]:
                freeze_params(d.embed_tokens)

    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
134
        )
135
        return lmap(str.strip, gen_text)
136

137
    def _step(self, batch: dict) -> Tuple:
138
        pad_token_id = self.tokenizer.pad_token_id
139
        source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
140
141
142
143
144
145
146
147

        if isinstance(self.model, T5ForConditionalGeneration):
            decoder_input_ids = self.model._shift_right(target_ids)
            lm_labels = target_ids
        else:
            decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
            lm_labels = target_ids[:, 1:].clone()  # why clone?

148
149
150
151
152
153
154
155
156
157
158
159
160
        outputs = self(source_ids, attention_mask=source_mask, decoder_input_ids=decoder_input_ids, use_cache=False)

        if self.hparams.label_smoothing == 0:
            # Same behavior as modeling_bart.py
            loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
            lm_logits = outputs[0]
            assert lm_logits.shape[-1] == self.model.config.vocab_size
            loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), lm_labels.view(-1))
        else:
            lprobs = torch.nn.functional.log_softmax(outputs[0], dim=-1)
            loss, nll_loss = label_smoothed_nll_loss(
                lprobs, lm_labels, self.hparams.label_smoothing, ignore_index=pad_token_id
            )
161
162
        return (loss,)

163
164
165
166
    @property
    def pad(self) -> int:
        return self.tokenizer.pad_token_id

167
168
    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)
169

170
        logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
171
172
        # tokens per batch
        logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["decoder_input_ids"].ne(self.pad).sum()
173
174
175
176
177
        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

178
    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
179
180
181
        self.step_count += 1
        losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
        loss = losses["loss"]
182
        rouges = {k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]}
183
        rouge_tensor: torch.FloatTensor = torch.tensor(rouges[self.val_metric]).type_as(loss)
184
185
186
187
188
189
        rouges.update({k: v.item() for k, v in losses.items()})
        losses.update(rouges)
        metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        metrics["step_count"] = self.step_count
        self.save_metrics(metrics, prefix)  # writes to self.metrics_save_path
        preds = flatten_list([x["preds"] for x in outputs])
190
191
192
193
194
        return {"log": metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": rouge_tensor}

    def save_metrics(self, latest_metrics, type_path) -> None:
        self.metrics[type_path].append(latest_metrics)
        save_json(self.metrics, self.metrics_save_path)
195

196
197
    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_rouge(preds, target)
198

199
    def _generative_step(self, batch: dict) -> dict:
200
        t0 = time.time()
201
        generated_ids = self.model.generate(
202
203
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
204
205
206
            use_cache=True,
            decoder_start_token_id=self.decoder_start_token_id,
        )
207
208
209
        gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
        target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"])
210
211
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
212
        rouge: Dict = self.calc_generative_metrics(preds, target)
213
        summ_len = np.mean(lmap(len, generated_ids))
214
        base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
215
        return base_metrics
216

217
218
    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)
219
220

    def test_epoch_end(self, outputs):
221
        return self.validation_epoch_end(outputs, prefix="test")
222

223
    def get_dataset(self, type_path) -> Seq2SeqDataset:
224
225
        n_obs = self.n_obs[type_path]
        max_target_length = self.target_lens[type_path]
226
        dataset = self.dataset_class(
227
228
229
230
231
232
233
234
            self.tokenizer,
            type_path=type_path,
            n_obs=n_obs,
            max_target_length=max_target_length,
            **self.dataset_kwargs,
        )
        return dataset

235
    def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        dataset = self.get_dataset(type_path)
        sampler = None
        if self.hparams.sortish_sampler and type_path == "train":
            assert self.hparams.gpus <= 1  # TODO: assert earlier
            sampler = dataset.make_sortish_sampler(batch_size)
            shuffle = False

        dataloader = DataLoader(
            dataset,
            batch_size=batch_size,
            collate_fn=dataset.collate_fn,
            shuffle=shuffle,
            num_workers=self.num_workers,
            sampler=sampler,
        )
251
252
253
        return dataloader

    def train_dataloader(self) -> DataLoader:
254
        dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
255
        t_total = (
256
            (len(dataloader.dataset) // (self.hparams.train_batch_size * max(1, self.hparams.gpus)))
257
258
            // self.hparams.accumulate_grad_batches
            * float(self.hparams.max_epochs)
259
260
261
262
        )
        scheduler = get_linear_schedule_with_warmup(
            self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=t_total
        )
263
264
        if max(scheduler.get_last_lr()) > 0:
            warnings.warn("All learning rates are 0")
265
266
267
        self.lr_scheduler = scheduler
        return dataloader

268
269
    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
270

271
272
    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
273
274
275
276

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
277
        add_generic_args(parser, root_dir)
278
        parser.add_argument(
279
            "--max_source_length",
280
281
282
283
284
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
285
286
287
288
289
290
291
        parser.add_argument(
            "--max_target_length",
            default=56,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        parser.add_argument(
            "--val_max_target_length",
            default=142,  # these defaults are optimized for CNNDM. For xsum, see README.md.
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--test_max_target_length",
            default=142,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
306
307
308
309
        parser.add_argument(
            "--data_dir",
            type=str,
            required=True,
310
            help="The input data dir. Should contain train.source, train.target, val.source, val.target, test.source, test.target",
311
        )
312
313
314
        parser.add_argument("--freeze_encoder", action="store_true")
        parser.add_argument("--freeze_embeds", action="store_true")
        parser.add_argument("--sortish_sampler", action="store_true", default=False)
315
        parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
316
317
318
        parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
319
320
321
        parser.add_argument(
            "--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
        )
322
        parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
323
324
        parser.add_argument("--src_lang", type=str, default="", required=False)
        parser.add_argument("--tgt_lang", type=str, default="", required=False)
325
326
327
328
329
330
331
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
            help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
        )
332
333
334
        return parser


335
336
337
338
339
340
class TranslationModule(SummarizationModule):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
    val_metric = "bleu"

341
342
343
344
345
    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang

346
347
348
349
    def calc_generative_metrics(self, preds, target) -> dict:
        return calculate_bleu_score(preds, target)


350
351
352
353
354
def main(args, model=None) -> SummarizationModule:
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if model is None:
355
356
357
358
        if args.task == "summarization":
            model: SummarizationModule = SummarizationModule(args)
        else:
            model: SummarizationModule = TranslationModule(args)
359
360

    dataset = Path(args.data_dir).name
361
    if (
362
        args.logger_name == "default"
363
364
365
366
367
        or args.fast_dev_run
        or str(args.output_dir).startswith("/tmp")
        or str(args.output_dir).startswith("/var")
    ):
        logger = True  # don't pollute wandb logs unnecessarily
368
    elif args.logger_name == "wandb":
369
370
        from pytorch_lightning.loggers import WandbLogger

371
372
        project = os.environ.get("WANDB_PROJECT", dataset)
        logger = WandbLogger(name=model.output_dir.name, project=project)
373

374
    elif args.logger_name == "wandb_shared":
375
376
        from pytorch_lightning.loggers import WandbLogger

377
        logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
378
379
380
381
382

    if args.early_stopping_patience >= 0:
        es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
    else:
        es_callback = False
383
384
385
386
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
387
        checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric),
388
        early_stopping_callback=es_callback,
389
390
391
        logger=logger,
        # TODO: early stopping callback seems messed up
    )
392
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
393
394
395
396
397
398
399
400
401
    if not args.do_predict:
        return model

    model.hparams.test_checkpoint = ""
    checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
    if checkpoints:
        model.hparams.test_checkpoint = checkpoints[-1]
        trainer.resume_from_checkpoint = checkpoints[-1]
    trainer.logger.log_hyperparams(model.hparams)
402
403
404

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
405
    return model
406
407
408
409


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
410
    parser = pl.Trainer.add_argparse_args(parser)
411
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
412

413
414
415
    args = parser.parse_args()

    main(args)