".circleci/vscode:/vscode.git/clone" did not exist on "380800ce09ef9b31475d298eb3e60f096056caca"
test_single_node_gpu.py 3.47 KB
Newer Older
1
import json
Philipp Schmid's avatar
Philipp Schmid committed
2
3
4
5
6
7
8
9
10
11
12
13
14
import os
import subprocess
import unittest
from ast import literal_eval

import pytest

from parameterized import parameterized_class

from . import is_sagemaker_available


if is_sagemaker_available():
15
    from sagemaker import Session, TrainingJobAnalytics
Philipp Schmid's avatar
Philipp Schmid committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    from sagemaker.huggingface import HuggingFace


@pytest.mark.skipif(
    literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True,
    reason="Skipping test because should only be run when releasing minor transformers version",
)
@pytest.mark.usefixtures("sm_env")
@parameterized_class(
    [
        {
            "framework": "pytorch",
            "script": "run_glue.py",
            "model_name_or_path": "distilbert-base-cased",
            "instance_type": "ml.g4dn.xlarge",
31
            "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9},
Philipp Schmid's avatar
Philipp Schmid committed
32
33
34
35
36
37
        },
        {
            "framework": "tensorflow",
            "script": "run_tf.py",
            "model_name_or_path": "distilbert-base-cased",
            "instance_type": "ml.g4dn.xlarge",
38
            "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9},
Philipp Schmid's avatar
Philipp Schmid committed
39
40
41
42
43
44
45
        },
    ]
)
class SingleNodeTest(unittest.TestCase):
    def setUp(self):
        if self.framework == "pytorch":
            subprocess.run(
Sylvain Gugger's avatar
Sylvain Gugger committed
46
                f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(),
Philipp Schmid's avatar
Philipp Schmid committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
                encoding="utf-8",
                check=True,
            )
        assert hasattr(self, "env")

    def create_estimator(self, instance_count=1):
        # creates estimator
        return HuggingFace(
            entry_point=self.script,
            source_dir=self.env.test_path,
            role=self.env.role,
            image_uri=self.env.image_uri,
            base_job_name=f"{self.env.base_job_name}-single",
            instance_count=instance_count,
            instance_type=self.instance_type,
            debugger_hook_config=False,
            hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path},
            metric_definitions=self.env.metric_definitions,
            py_version="py36",
        )

    def save_results_as_csv(self, job_name):
        TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv")

    def test_glue(self):
        # create estimator
        estimator = self.create_estimator()

        # run training
        estimator.fit()

        # result dataframe
        result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()

        # extract kpis
        eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
        eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
84
85
86
87
        # get train time from SageMaker job, this includes starting, preprocessing, stopping
        train_runtime = (
            Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 999999)
        )
Philipp Schmid's avatar
Philipp Schmid committed
88
89

        # assert kpis
90
        assert train_runtime <= self.results["train_runtime"]
Philipp Schmid's avatar
Philipp Schmid committed
91
92
        assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
        assert all(t <= self.results["eval_loss"] for t in eval_loss)
93
94
95
96

        # dump tests result into json file to share in PR
        with open(f"{estimator.latest_training_job.name}.json", "w") as outfile:
            json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, outfile)