test_pipelines_text_to_audio.py 6.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from transformers import (
    MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
    AutoProcessor,
    TextToAudioPipeline,
    pipeline,
)
from transformers.testing_utils import (
    is_pipeline_test,
    require_torch,
    require_torch_gpu,
    require_torch_or_tf,
    slow,
)

from .test_pipelines_common import ANY


@is_pipeline_test
@require_torch_or_tf
class TextToAudioPipelineTests(unittest.TestCase):
    model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING
40
    # for now only test text_to_waveform and not text_to_spectrogram
41
42
43

    @slow
    @require_torch
44
45
    def test_small_musicgen_pt(self):
        music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
46
47
48
49
50
51

        forward_params = {
            "do_sample": False,
            "max_new_tokens": 250,
        }

52
53
        outputs = music_generator("This is a test", forward_params=forward_params)
        self.assertEqual({"audio": ANY(np.ndarray), "sampling_rate": 32000}, outputs)
54
55

        # test two examples side-by-side
56
        outputs = music_generator(["This is a test", "This is a second test"], forward_params=forward_params)
57
58
59
60
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

        # test batching
61
        outputs = music_generator(
62
63
            ["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2
        )
64
65
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
66
67
68

    @slow
    @require_torch
69
    def test_small_bark_pt(self):
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt")

        forward_params = {
            # Using `do_sample=False` to force deterministic output
            "do_sample": False,
            "semantic_max_new_tokens": 100,
        }

        outputs = speech_generator("This is a test", forward_params=forward_params)
        self.assertEqual(
            {"audio": ANY(np.ndarray), "sampling_rate": 24000},
            outputs,
        )

        # test two examples side-by-side
        outputs = speech_generator(
            ["This is a test", "This is a second test"],
            forward_params=forward_params,
        )
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

        # test other generation strategy
        forward_params = {
            "do_sample": True,
            "semantic_max_new_tokens": 100,
            "semantic_num_return_sequences": 2,
        }

        outputs = speech_generator("This is a test", forward_params=forward_params)
        audio = outputs["audio"]
        self.assertEqual(ANY(np.ndarray), audio)

        # test using a speaker embedding
        processor = AutoProcessor.from_pretrained("suno/bark-small")
        temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
        history_prompt = temp_inp["history_prompt"]
        forward_params["history_prompt"] = history_prompt

        outputs = speech_generator(
            ["This is a test", "This is a second test"],
            forward_params=forward_params,
            batch_size=2,
        )
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

    @slow
    @require_torch_gpu
    def test_conversion_additional_tensor(self):
        speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt", device=0)
        processor = AutoProcessor.from_pretrained("suno/bark-small")

        forward_params = {
            "do_sample": True,
            "semantic_max_new_tokens": 100,
        }

        # atm, must do to stay coherent with BarkProcessor
        preprocess_params = {
            "max_length": 256,
            "add_special_tokens": False,
            "return_attention_mask": True,
            "return_token_type_ids": False,
            "padding": "max_length",
        }
        outputs = speech_generator(
            "This is a test",
            forward_params=forward_params,
            preprocess_params=preprocess_params,
        )

        temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
        history_prompt = temp_inp["history_prompt"]
        forward_params["history_prompt"] = history_prompt

        # history_prompt is a torch.Tensor passed as a forward_param
147
        # if generation is successful, it means that it was passed to the right device
148
149
150
151
152
153
154
155
        outputs = speech_generator(
            "This is a test", forward_params=forward_params, preprocess_params=preprocess_params
        )
        self.assertEqual(
            {"audio": ANY(np.ndarray), "sampling_rate": 24000},
            outputs,
        )

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    @slow
    @require_torch
    def test_vits_model_pt(self):
        speech_generator = pipeline(task="text-to-audio", model="facebook/mms-tts-eng", framework="pt")

        outputs = speech_generator("This is a test")
        self.assertEqual(outputs["sampling_rate"], 16000)

        audio = outputs["audio"]
        self.assertEqual(ANY(np.ndarray), audio)

        # test two examples side-by-side
        outputs = speech_generator(["This is a test", "This is a second test"])
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)

        # test batching
        outputs = speech_generator(["This is a test", "This is a second test"], batch_size=2)
        self.assertEqual(ANY(np.ndarray), outputs[0]["audio"])

176
177
178
179
180
181
182
183
    def get_test_pipeline(self, model, tokenizer, processor):
        speech_generator = TextToAudioPipeline(model=model, tokenizer=tokenizer)
        return speech_generator, ["This is a test", "Another test"]

    def run_pipeline_test(self, speech_generator, _):
        outputs = speech_generator("This is a test")
        self.assertEqual(ANY(np.ndarray), outputs["audio"])

184
185
186
        forward_params = (
            {"num_return_sequences": 2, "do_sample": True} if speech_generator.model.can_generate() else {}
        )
187
188
189
        outputs = speech_generator(["This is great !", "Something else"], forward_params=forward_params)
        audio = [output["audio"] for output in outputs]
        self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)