"tests/models/longformer/__init__.py" did not exist on "783d7d2629e97c5f0c5f9ef01b8c66410275c204"
test_pipelines_common.py 30.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import logging
Sylvain Gugger's avatar
Sylvain Gugger committed
16
17
18
import os
import sys
import tempfile
19
import unittest
Sylvain Gugger's avatar
Sylvain Gugger committed
20
from pathlib import Path
21

22
import datasets
23
import numpy as np
24
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo, set_access_token
Sylvain Gugger's avatar
Sylvain Gugger committed
25
from requests.exceptions import HTTPError
26

27
from transformers import (
28
    AutoModelForSequenceClassification,
29
    AutoTokenizer,
30
    DistilBertForSequenceClassification,
31
    TextClassificationPipeline,
Sylvain Gugger's avatar
Sylvain Gugger committed
32
    TFAutoModelForSequenceClassification,
33
34
    pipeline,
)
35
36
from transformers.pipelines import PIPELINE_REGISTRY, get_task
from transformers.pipelines.base import Pipeline, _pad
37
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
38
39
    TOKEN,
    USER,
40
    CaptureLogger,
41
    RequestCounter,
Sylvain Gugger's avatar
Sylvain Gugger committed
42
    is_staging_test,
43
44
45
46
    nested_simplify,
    require_tensorflow_probability,
    require_tf,
    require_torch,
47
    require_torch_or_tf,
48
49
    slow,
)
50
from transformers.utils import direct_transformers_import, is_tf_available, is_torch_available
51
from transformers.utils import logging as transformers_logging
52
53


Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
58
sys.path.append(str(Path(__file__).parent.parent.parent / "utils"))

from test_module.custom_pipeline import PairClassificationPipeline  # noqa E402


59
60
61
logger = logging.getLogger(__name__)


62
63
64
65
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent.parent, "src/transformers")


# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
66
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)
67
68


69
class ANY:
70
71
    def __init__(self, *_types):
        self._types = _types
72
73

    def __eq__(self, other):
74
        return isinstance(other, self._types)
75
76

    def __repr__(self):
77
        return f"ANY({', '.join(_type.__name__ for _type in self._types)})"
78
79


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
class CommonPipelineTest(unittest.TestCase):
    @require_torch
    def test_pipeline_iteration(self):
        from torch.utils.data import Dataset

        class MyDataset(Dataset):
            data = [
                "This is a test",
                "This restaurant is great",
                "This restaurant is awful",
            ]

            def __len__(self):
                return 3

            def __getitem__(self, i):
                return self.data[i]

        text_classifier = pipeline(
99
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
100
101
102
103
        )
        dataset = MyDataset()
        for output in text_classifier(dataset):
            self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
104

105
106
    @require_torch
    def test_check_task_auto_inference(self):
107
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
108
109
110

        self.assertIsInstance(pipe, TextClassificationPipeline)

111
112
113
114
115
116
117
118
119
120
    @require_torch
    def test_pipeline_batch_size_global(self):
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
        self.assertEqual(pipe._batch_size, None)
        self.assertEqual(pipe._num_workers, None)

        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1)
        self.assertEqual(pipe._batch_size, 2)
        self.assertEqual(pipe._num_workers, 1)

121
122
123
124
125
126
127
128
129
    @require_torch
    def test_pipeline_pathlike(self):
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
        with tempfile.TemporaryDirectory() as d:
            pipe.save_pretrained(d)
            path = Path(d)
            newpipe = pipeline(task="text-classification", model=path)
        self.assertIsInstance(newpipe, TextClassificationPipeline)

130
131
132
133
134
    @require_torch
    def test_pipeline_override(self):
        class MyPipeline(TextClassificationPipeline):
            pass

135
        text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
136
137
138
139
140
141
142
143
144
145
146

        self.assertIsInstance(text_classifier, MyPipeline)

    def test_check_task(self):
        task = get_task("gpt2")
        self.assertEqual(task, "text-generation")

        with self.assertRaises(RuntimeError):
            # Wrong framework
            get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")

147
148
149
150
151
152
    @require_torch
    def test_iterator_data(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

153
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
154
155
156

        results = []
        for out in pipe(data(10)):
157
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
158
159
160
161
162
163
164
            results.append(out)
        self.assertEqual(len(results), 10)

        # When using multiple workers on streamable data it should still work
        # This will force using `num_workers=1` with a warning for now.
        results = []
        for out in pipe(data(10), num_workers=2):
165
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
166
167
168
169
170
171
172
173
174
            results.append(out)
        self.assertEqual(len(results), 10)

    @require_tf
    def test_iterator_data_tf(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

175
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
176
177
178
        out = pipe("This is a test")
        results = []
        for out in pipe(data(10)):
179
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
180
181
182
            results.append(out)
        self.assertEqual(len(results), 10)

183
184
185
    @require_torch
    def test_unbatch_attentions_hidden_states(self):
        model = DistilBertForSequenceClassification.from_pretrained(
186
            "hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
187
        )
188
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
189
190
191
192
193
194
195
        text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)

        # Used to throw an error because `hidden_states` are a tuple of tensors
        # instead of the expected tensor.
        outputs = text_classifier(["This is great !"] * 20, batch_size=32)
        self.assertEqual(len(outputs), 20)

196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
class PipelineScikitCompatTest(unittest.TestCase):
    @require_torch
    def test_pipeline_predict_pt(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.predict(data)
        self.assertEqual(expected_output, actual_output)

    @require_tf
    def test_pipeline_predict_tf(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.predict(data)
        self.assertEqual(expected_output, actual_output)

    @require_torch
    def test_pipeline_transform_pt(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.transform(data)
        self.assertEqual(expected_output, actual_output)

    @require_tf
    def test_pipeline_transform_tf(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.transform(data)
        self.assertEqual(expected_output, actual_output)


247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
class PipelinePadTest(unittest.TestCase):
    @require_torch
    def test_pipeline_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "input_ids": torch.LongTensor([[1, 23, 24, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 0]]),
            },
            {
                "label": "label2",
                "input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "right"),
                torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "left"),
                torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]])
            )
        )

    @require_torch
    def test_pipeline_image_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
            {
                "label": "label2",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "pixel_values", 10, "right"),
                torch.zeros((2, 3, 10, 10)),
            )
        )

    @require_torch
    def test_pipeline_offset_mapping(self):
        import torch

        items = [
            {
                "offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long),
            },
            {
                "offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long),
            },
        ]

        self.assertTrue(
            torch.allclose(
                _pad(items, "offset_mappings", 0, "right"),
                torch.zeros((2, 11, 2), dtype=torch.long),
            ),
        )
326
327
328


class PipelineUtilsTest(unittest.TestCase):
329
    @require_torch
330
331
332
333
334
335
336
337
338
339
340
341
342
    def test_pipeline_dataset(self):
        from transformers.pipelines.pt_utils import PipelineDataset

        dummy_dataset = [0, 1, 2, 3]

        def add(number, extra=0):
            return number + extra

        dataset = PipelineDataset(dummy_dataset, add, {"extra": 2})
        self.assertEqual(len(dataset), 4)
        outputs = [dataset[i] for i in range(4)]
        self.assertEqual(outputs, [2, 3, 4, 5])

343
    @require_torch
344
345
346
347
348
349
350
351
352
353
354
    def test_pipeline_iterator(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [0, 1, 2, 3]

        def add(number, extra=0):
            return number + extra

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2})
        self.assertEqual(len(dataset), 4)

355
        outputs = list(dataset)
356
357
        self.assertEqual(outputs, [2, 3, 4, 5])

358
    @require_torch
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    def test_pipeline_iterator_no_len(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        def dummy_dataset():
            for i in range(4):
                yield i

        def add(number, extra=0):
            return number + extra

        dataset = PipelineIterator(dummy_dataset(), add, {"extra": 2})
        with self.assertRaises(TypeError):
            len(dataset)

373
        outputs = list(dataset)
374
375
        self.assertEqual(outputs, [2, 3, 4, 5])

376
    @require_torch
377
378
379
380
381
382
383
384
385
386
    def test_pipeline_batch_unbatch_iterator(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [{"id": [0, 1, 2]}, {"id": [3]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]]}

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

387
        outputs = list(dataset)
388
389
        self.assertEqual(outputs, [{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}])

390
    @require_torch
391
392
393
394
395
396
397
398
399
400
401
402
    def test_pipeline_batch_unbatch_iterator_tensors(self):
        import torch

        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [{"id": torch.LongTensor([[10, 20], [0, 1], [0, 2]])}, {"id": torch.LongTensor([[3]])}]

        def add(number, extra=0):
            return {"id": number["id"] + extra}

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

403
        outputs = list(dataset)
404
405
406
407
        self.assertEqual(
            nested_simplify(outputs), [{"id": [[12, 22]]}, {"id": [[2, 3]]}, {"id": [[2, 4]]}, {"id": [[5]]}]
        )

408
    @require_torch
409
410
411
412
413
414
415
416
417
418
419
    def test_pipeline_chunk_iterator(self):
        from transformers.pipelines.pt_utils import PipelineChunkIterator

        def preprocess_chunk(n: int):
            for i in range(n):
                yield i

        dataset = [2, 3]

        dataset = PipelineChunkIterator(dataset, preprocess_chunk, {}, loader_batch_size=3)

420
        outputs = list(dataset)
421
422
423

        self.assertEqual(outputs, [0, 1, 0, 1, 2])

424
    @require_torch
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    def test_pipeline_pack_iterator(self):
        from transformers.pipelines.pt_utils import PipelinePackIterator

        def pack(item):
            return {"id": item["id"] + 1, "is_last": item["is_last"]}

        dataset = [
            {"id": 0, "is_last": False},
            {"id": 1, "is_last": True},
            {"id": 0, "is_last": False},
            {"id": 1, "is_last": False},
            {"id": 2, "is_last": True},
        ]

        dataset = PipelinePackIterator(dataset, pack, {})

441
        outputs = list(dataset)
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        self.assertEqual(
            outputs,
            [
                [
                    {"id": 1},
                    {"id": 2},
                ],
                [
                    {"id": 1},
                    {"id": 2},
                    {"id": 3},
                ],
            ],
        )

457
    @require_torch
458
459
460
461
462
463
464
465
466
467
    def test_pipeline_pack_unbatch_iterator(self):
        from transformers.pipelines.pt_utils import PipelinePackIterator

        dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, True, False]}, {"id": [3], "is_last": [True]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}

        dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

468
        outputs = list(dataset)
469
        self.assertEqual(outputs, [[{"id": 2}, {"id": 3}], [{"id": 4}, {"id": 5}]])
470
471
472
473
474
475
476
477
478

        # is_false Across batch
        dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, False, False]}, {"id": [3], "is_last": [True]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}

        dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

479
        outputs = list(dataset)
480
        self.assertEqual(outputs, [[{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]])
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

    @slow
    @require_torch
    def test_load_default_pipelines_pt(self):
        import torch

        from transformers.pipelines import SUPPORTED_TASKS

        set_seed_fn = lambda: torch.manual_seed(0)  # noqa: E731
        for task in SUPPORTED_TASKS.keys():
            if task == "table-question-answering":
                # test table in seperate test due to more dependencies
                continue

            self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt)

    @slow
    @require_tf
    def test_load_default_pipelines_tf(self):
        import tensorflow as tf

        from transformers.pipelines import SUPPORTED_TASKS

        set_seed_fn = lambda: tf.random.set_seed(0)  # noqa: E731
        for task in SUPPORTED_TASKS.keys():
            if task == "table-question-answering":
                # test table in seperate test due to more dependencies
                continue

            self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf)

    @slow
    @require_torch
    def test_load_default_pipelines_pt_table_qa(self):
        import torch

        set_seed_fn = lambda: torch.manual_seed(0)  # noqa: E731
        self.check_default_pipeline("table-question-answering", "pt", set_seed_fn, self.check_models_equal_pt)

    @slow
    @require_tf
    @require_tensorflow_probability
    def test_load_default_pipelines_tf_table_qa(self):
        import tensorflow as tf

        set_seed_fn = lambda: tf.random.set_seed(0)  # noqa: E731
        self.check_default_pipeline("table-question-answering", "tf", set_seed_fn, self.check_models_equal_tf)

    def check_default_pipeline(self, task, framework, set_seed_fn, check_models_equal_fn):
        from transformers.pipelines import SUPPORTED_TASKS, pipeline

        task_dict = SUPPORTED_TASKS[task]
        # test to compare pipeline to manually loading the respective model
        model = None
        relevant_auto_classes = task_dict[framework]

        if len(relevant_auto_classes) == 0:
            # task has no default
            logger.debug(f"{task} in {framework} has no default")
            return

        # by default use first class
        auto_model_cls = relevant_auto_classes[0]

        # retrieve correct model ids
        if task == "translation":
            # special case for translation pipeline which has multiple languages
            model_ids = []
            revisions = []
            tasks = []
            for translation_pair in task_dict["default"].keys():
                model_id, revision = task_dict["default"][translation_pair]["model"][framework]

                model_ids.append(model_id)
                revisions.append(revision)
                tasks.append(task + f"_{'_to_'.join(translation_pair)}")
        else:
            # normal case - non-translation pipeline
            model_id, revision = task_dict["default"]["model"][framework]

            model_ids = [model_id]
            revisions = [revision]
            tasks = [task]

        # check for equality
        for model_id, revision, task in zip(model_ids, revisions, tasks):
            # load default model
            try:
                set_seed_fn()
                model = auto_model_cls.from_pretrained(model_id, revision=revision)
            except ValueError:
                # first auto class is possible not compatible with model, go to next model class
                auto_model_cls = relevant_auto_classes[1]
                set_seed_fn()
                model = auto_model_cls.from_pretrained(model_id, revision=revision)

            # load default pipeline
            set_seed_fn()
            default_pipeline = pipeline(task, framework=framework)

            # compare pipeline model with default model
            models_are_equal = check_models_equal_fn(default_pipeline.model, model)
            self.assertTrue(models_are_equal, f"{task} model doesn't match pipeline.")

            logger.debug(f"{task} in {framework} succeeded with {model_id}.")

    def check_models_equal_pt(self, model1, model2):
        models_are_equal = True
        for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
            if model1_p.data.ne(model2_p.data).sum() > 0:
                models_are_equal = False

        return models_are_equal

    def check_models_equal_tf(self, model1, model2):
        models_are_equal = True
        for model1_p, model2_p in zip(model1.weights, model2.weights):
            if np.abs(model1_p.numpy() - model2_p.numpy()).sum() > 1e-5:
                models_are_equal = False

        return models_are_equal
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622


class CustomPipeline(Pipeline):
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        if "maybe_arg" in kwargs:
            preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
        return preprocess_kwargs, {}, {}

    def preprocess(self, text, maybe_arg=2):
        input_ids = self.tokenizer(text, return_tensors="pt")
        return input_ids

    def _forward(self, model_inputs):
        outputs = self.model(**model_inputs)
        return outputs

    def postprocess(self, model_outputs):
        return model_outputs["logits"].softmax(-1).numpy()


Sylvain Gugger's avatar
Sylvain Gugger committed
623
class CustomPipelineTest(unittest.TestCase):
624
625
626
627
628
    def test_warning_logs(self):
        transformers_logging.set_verbosity_debug()
        logger_ = transformers_logging.get_logger("transformers.pipelines.base")

        alias = "text-classification"
629
630
        # Get the original task, so we can restore it at the end.
        # (otherwise the subsequential tests in `TextClassificationPipelineTests` will fail)
Sylvain Gugger's avatar
Sylvain Gugger committed
631
        _, original_task, _ = PIPELINE_REGISTRY.check_task(alias)
632
633
634

        try:
            with CaptureLogger(logger_) as cm:
Sylvain Gugger's avatar
Sylvain Gugger committed
635
                PIPELINE_REGISTRY.register_pipeline(alias, PairClassificationPipeline)
636
637
638
            self.assertIn(f"{alias} is already registered", cm.out)
        finally:
            # restore
Sylvain Gugger's avatar
Sylvain Gugger committed
639
            PIPELINE_REGISTRY.supported_tasks[alias] = original_task
640
641

    def test_register_pipeline(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
642
643
644
645
646
647
648
649
        PIPELINE_REGISTRY.register_pipeline(
            "custom-text-classification",
            pipeline_class=PairClassificationPipeline,
            pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
            tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
            default={"pt": "hf-internal-testing/tiny-random-distilbert"},
            type="text",
        )
650
651
        assert "custom-text-classification" in PIPELINE_REGISTRY.get_supported_tasks()

Sylvain Gugger's avatar
Sylvain Gugger committed
652
        _, task_def, _ = PIPELINE_REGISTRY.check_task("custom-text-classification")
Sylvain Gugger's avatar
Sylvain Gugger committed
653
654
        self.assertEqual(task_def["pt"], (AutoModelForSequenceClassification,) if is_torch_available() else ())
        self.assertEqual(task_def["tf"], (TFAutoModelForSequenceClassification,) if is_tf_available() else ())
655
        self.assertEqual(task_def["type"], "text")
Sylvain Gugger's avatar
Sylvain Gugger committed
656
657
658
659
660
661
        self.assertEqual(task_def["impl"], PairClassificationPipeline)
        self.assertEqual(task_def["default"], {"model": {"pt": "hf-internal-testing/tiny-random-distilbert"}})

        # Clean registry for next tests.
        del PIPELINE_REGISTRY.supported_tasks["custom-text-classification"]

662
    @require_torch_or_tf
Sylvain Gugger's avatar
Sylvain Gugger committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    def test_dynamic_pipeline(self):
        PIPELINE_REGISTRY.register_pipeline(
            "pair-classification",
            pipeline_class=PairClassificationPipeline,
            pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
            tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
        )

        classifier = pipeline("pair-classification", model="hf-internal-testing/tiny-random-bert")

        # Clean registry as we won't need the pipeline to be in it for the rest to work.
        del PIPELINE_REGISTRY.supported_tasks["pair-classification"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            classifier.save_pretrained(tmp_dir)
            # checks
            self.assertDictEqual(
                classifier.model.config.custom_pipelines,
                {
                    "pair-classification": {
                        "impl": "custom_pipeline.PairClassificationPipeline",
                        "pt": ("AutoModelForSequenceClassification",) if is_torch_available() else (),
                        "tf": ("TFAutoModelForSequenceClassification",) if is_tf_available() else (),
                    }
                },
            )
            # Fails if the user forget to pass along `trust_remote_code=True`
            with self.assertRaises(ValueError):
                _ = pipeline(model=tmp_dir)

            new_classifier = pipeline(model=tmp_dir, trust_remote_code=True)
            # Using trust_remote_code=False forces the traditional pipeline tag
            old_classifier = pipeline("text-classification", model=tmp_dir, trust_remote_code=False)
        # Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
        # dynamic module
        self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
        self.assertEqual(new_classifier.task, "pair-classification")
        results = new_classifier("I hate you", second_text="I love you")
        self.assertDictEqual(
            nested_simplify(results),
            {"label": "LABEL_0", "score": 0.505, "logits": [-0.003, -0.024]},
        )

        self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
        self.assertEqual(old_classifier.task, "text-classification")
        results = old_classifier("I hate you", text_pair="I love you")
        self.assertListEqual(
            nested_simplify(results),
            [{"label": "LABEL_0", "score": 0.505}],
        )

714
    @require_torch_or_tf
715
716
717
718
719
720
    def test_cached_pipeline_has_minimum_calls_to_head(self):
        # Make sure we have cached the pipeline.
        _ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
721
            self.assertEqual(counter.head_request_count, 1)
722
723
            self.assertEqual(counter.other_request_count, 0)

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    @require_torch
    def test_chunk_pipeline_batching_single_file(self):
        # Make sure we have cached the pipeline.
        pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
        ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
        # For some reason scoping doesn't work if not using `self.`
        self.COUNT = 0
        forward = pipe.model.forward

        def new_forward(*args, **kwargs):
            self.COUNT += 1
            return forward(*args, **kwargs)

        pipe.model.forward = new_forward

        for out in pipe(audio, return_timestamps="char", chunk_length_s=3, stride_length_s=[1, 1], batch_size=1024):
            pass

        self.assertEqual(self.COUNT, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

@require_torch
@is_staging_test
class DynamicPipelineTester(unittest.TestCase):
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "I", "love", "hate", "you"]

    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, repo_id="test-dynamic-pipeline")
        except HTTPError:
            pass

    def test_push_to_hub_dynamic_pipeline(self):
        from transformers import BertConfig, BertForSequenceClassification, BertTokenizer

        PIPELINE_REGISTRY.register_pipeline(
            "pair-classification",
            pipeline_class=PairClassificationPipeline,
            pt_model=AutoModelForSequenceClassification,
        )

        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertForSequenceClassification(config).eval()

        with tempfile.TemporaryDirectory() as tmp_dir:
781
782
            create_repo(f"{USER}/test-dynamic-pipeline", token=self._token)
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-pipeline", token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = BertTokenizer(vocab_file)

            classifier = pipeline("pair-classification", model=model, tokenizer=tokenizer)

            # Clean registry as we won't need the pipeline to be in it for the rest to work.
            del PIPELINE_REGISTRY.supported_tasks["pair-classification"]

            classifier.save_pretrained(tmp_dir)
            # checks
            self.assertDictEqual(
                classifier.model.config.custom_pipelines,
                {
                    "pair-classification": {
                        "impl": "custom_pipeline.PairClassificationPipeline",
                        "pt": ("AutoModelForSequenceClassification",),
                        "tf": (),
                    }
                },
            )

            repo.push_to_hub()

        # Fails if the user forget to pass along `trust_remote_code=True`
        with self.assertRaises(ValueError):
            _ = pipeline(model=f"{USER}/test-dynamic-pipeline")

        new_classifier = pipeline(model=f"{USER}/test-dynamic-pipeline", trust_remote_code=True)
        # Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
        # dynamic module
        self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")

        results = classifier("I hate you", second_text="I love you")
        new_results = new_classifier("I hate you", second_text="I love you")
        self.assertDictEqual(nested_simplify(results), nested_simplify(new_results))

        # Using trust_remote_code=False forces the traditional pipeline tag
        old_classifier = pipeline(
            "text-classification", model=f"{USER}/test-dynamic-pipeline", trust_remote_code=False
        )
        self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
        self.assertEqual(old_classifier.task, "text-classification")
        new_results = old_classifier("I hate you", text_pair="I love you")
        self.assertListEqual(
            nested_simplify([{"label": results["label"], "score": results["score"]}]), nested_simplify(new_results)
        )