run_distributed_eval.py 9.23 KB
Newer Older
1
2
#!/usr/bin/env python

3
import argparse
4
5
6
import shutil
import time
from json import JSONDecodeError
7
8
from logging import getLogger
from pathlib import Path
9
from typing import Dict, List
10
11
12
13
14
15

import torch
from torch.utils.data import DataLoader
from tqdm import tqdm

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
16
17
18
19
from utils import (
    Seq2SeqDataset,
    calculate_bleu,
    calculate_rouge,
20
    chunks,
21
22
23
24
25
26
27
    lmap,
    load_json,
    parse_numeric_n_bool_cl_kwargs,
    save_json,
    use_task_specific_params,
    write_txt_file,
)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


logger = getLogger(__name__)


def eval_data_dir(
    data_dir,
    save_dir: str,
    model_name: str,
    bs: int = 8,
    max_source_length: int = 1024,
    type_path="val",
    n_obs=None,
    fp16=False,
    task="summarization",
    local_rank=None,
44
    num_return_sequences=1,
45
46
47
    src_lang=None,
    tgt_lang=None,
    prefix="",
48
49
50
51
52
53
54
55
56
57
58
59
60
    **generate_kwargs,
) -> Dict:
    """Run evaluation on part of the data for one gpu and save to {save_dir}/rank_{rank}_output.json"""
    model_name = str(model_name)
    assert local_rank is not None
    torch.distributed.init_process_group(backend="nccl", rank=local_rank)

    save_dir = Path(save_dir)
    save_path = save_dir.joinpath(f"rank_{local_rank}_output.json")
    torch.cuda.set_device(local_rank)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name).cuda()
    if fp16:
        model = model.half()
61
62
63
64
65
    # determine if we need to increase num_beams
    use_task_specific_params(model, task)  # update config with task specific params
    num_beams = generate_kwargs.pop("num_beams", model.config.num_beams)  # AttributeError risk?
    if num_return_sequences > num_beams:
        num_beams = num_return_sequences
66
67
68

    tokenizer = AutoTokenizer.from_pretrained(model_name)
    logger.info(f"Inferred tokenizer type: {tokenizer.__class__}")  # if this is wrong, check config.model_type.
69

70
71
    if max_source_length is None:
        max_source_length = tokenizer.model_max_length
72
73
    if prefix is None:
        prefix = prefix or getattr(model.config, "prefix", "") or ""
74
75
76
77
78
79
80
    ds = Seq2SeqDataset(
        tokenizer,
        data_dir,
        max_source_length,
        max_target_length=1024,
        type_path=type_path,
        n_obs=n_obs,
81
82
83
        src_lang=src_lang,
        tgt_lang=tgt_lang,
        prefix=prefix,
84
    )
85
86
87
    # I set shuffle=True for a more accurate progress bar.
    # If all the longest samples are first, the prog bar estimate is too high at the beginning.
    sampler = ds.make_sortish_sampler(bs, distributed=True, add_extra_examples=False, shuffle=True)
88
89
90
91
92
93
    data_loader = DataLoader(ds, sampler=sampler, batch_size=bs, collate_fn=ds.collate_fn)
    results = []
    for batch in tqdm(data_loader):
        summaries = model.generate(
            input_ids=batch["input_ids"].to(model.device),
            attention_mask=batch["attention_mask"].to(model.device),
94
95
            num_return_sequences=num_return_sequences,
            num_beams=num_beams,
96
97
            **generate_kwargs,
        )
98
        preds = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
99
        ids = batch["ids"]
100
101
        if num_return_sequences > 1:
            preds = chunks(preds, num_return_sequences)  # batch size chunks, each of size num_return_seq
102
103
        for i, pred in enumerate(preds):
            results.append(dict(pred=pred, id=ids[i].item()))
104
    save_json(results, save_path)
105
    return results, sampler.num_replicas
106
107
108
109
110
111


def run_generate():
    parser = argparse.ArgumentParser(
        epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate"
    )
112
    parser.add_argument("--data_dir", type=str, help="like cnn_dm/test.source")
113
114
115
116
117
118
119
    parser.add_argument(
        "--model_name",
        type=str,
        help="like facebook/bart-large-cnn,t5-base, etc.",
        default="sshleifer/distilbart-xsum-12-3",
    )
    parser.add_argument("--save_dir", type=str, help="where to save", default="tmp_gen")
120
121
122
123
    parser.add_argument("--max_source_length", type=int, default=None)
    parser.add_argument(
        "--type_path", type=str, default="test", help="which subset to evaluate typically train/val/test"
    )
124
125
126
127
128
129
130
131
132
    parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics")
    parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
    parser.add_argument(
        "--local_rank", type=int, default=-1, required=False, help="should be passed by distributed.launch"
    )

    parser.add_argument(
        "--n_obs", type=int, default=None, required=False, help="How many observations. Defaults to all."
    )
133
134
135
    parser.add_argument(
        "--num_return_sequences", type=int, default=1, required=False, help="How many sequences to return"
    )
136
137
138
139
140
141
142
    parser.add_argument(
        "--sync_timeout",
        type=int,
        default=600,
        required=False,
        help="How long should master process wait for other processes to finish.",
    )
143
144
145
146
147
    parser.add_argument("--src_lang", type=str, default=None, required=False)
    parser.add_argument("--tgt_lang", type=str, default=None, required=False)
    parser.add_argument(
        "--prefix", type=str, required=False, default=None, help="will be added to the begininng of src examples"
    )
148
    parser.add_argument("--fp16", action="store_true")
149
150
    parser.add_argument("--debug", action="store_true")
    start_time = time.time()
151
    args, rest = parser.parse_known_args()
152
153
    generate_kwargs = parse_numeric_n_bool_cl_kwargs(rest)
    if generate_kwargs and args.local_rank <= 0:
154
        print(f"parsed the following generate kwargs: {generate_kwargs}")
155
156
157
158
159
160
161
    json_save_dir = Path(args.save_dir + "_tmp")
    Path(json_save_dir).mkdir(exist_ok=True)  # this handles locking.
    intermediate_files = list(json_save_dir.glob("rank_*.json"))
    if intermediate_files:
        raise ValueError(f"Found files at {json_save_dir} please move or remove them.")
        # In theory, a node could finish and save before another node hits this. If this happens, we can address later.

162
    Path(args.save_dir).mkdir(exist_ok=True)
163
164
165
    results, num_replicas = eval_data_dir(
        args.data_dir,
        json_save_dir,
166
        args.model_name,
167
        type_path=args.type_path,
Sam Shleifer's avatar
Sam Shleifer committed
168
        bs=args.bs,
169
170
171
172
        fp16=args.fp16,
        task=args.task,
        local_rank=args.local_rank,
        n_obs=args.n_obs,
173
        max_source_length=args.max_source_length,
174
        num_return_sequences=args.num_return_sequences,
175
176
177
        prefix=args.prefix,
        src_lang=args.src_lang,
        tgt_lang=args.tgt_lang,
178
        **generate_kwargs,
179
180
    )

181
182
183
184
    if args.local_rank <= 0:
        save_dir = Path(args.save_dir)
        save_dir.mkdir(exist_ok=True)
        partial_results = gather_results_from_each_node(num_replicas, json_save_dir, args.sync_timeout)
185
        preds = combine_partial_results(partial_results)
186
187
188
189
190
        if args.num_return_sequences > 1:
            save_path = save_dir.joinpath("pseudolabel_results.json")
            print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/")
            save_json(preds, save_path)
            return
191
192
193
        tgt_file = Path(args.data_dir).joinpath(args.type_path + ".target")
        labels = [x.rstrip() for x in open(tgt_file).readlines()][: len(preds)]

194
195
196
197
198
199
200
        # Calculate metrics, save metrics,  and save _generations.txt
        calc_bleu = "translation" in args.task
        score_fn = calculate_bleu if calc_bleu else calculate_rouge
        metric_name = "bleu" if calc_bleu else "rouge"
        metrics: Dict = score_fn(preds, labels)
        metrics["n_obs"] = len(preds)
        runtime = time.time() - start_time
201
202
        metrics["seconds_per_sample"] = round(runtime / metrics["n_obs"], 4)
        metrics["n_gpus"] = num_replicas
203
204
        # TODO(@stas00): add whatever metadata to metrics
        metrics_save_path = save_dir.joinpath(f"{args.type_path}_{metric_name}.json")
205
        save_json(metrics, metrics_save_path, indent=None)
206
207
208
209
210
211
212
213
        print(metrics)
        write_txt_file(preds, save_dir.joinpath(f"{args.type_path}_generations.txt"))
        if args.debug:
            write_txt_file(labels, save_dir.joinpath(f"{args.type_path}.target"))
        else:
            shutil.rmtree(json_save_dir)


214
def combine_partial_results(partial_results) -> List:
215
216
217
218
219
220
    """Concatenate partial results into one file, then sort it by id."""
    records = []
    for partial_result in partial_results:
        records.extend(partial_result)
    records = list(sorted(records, key=lambda x: x["id"]))
    preds = [x["pred"] for x in records]
221
    return preds
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242


def gather_results_from_each_node(num_replicas, save_dir, timeout) -> List[Dict[str, List]]:
    # WAIT FOR lots of .json files
    start_wait = time.time()
    logger.info("waiting for all nodes to finish")
    json_data = None
    while (time.time() - start_wait) < timeout:
        json_files = list(save_dir.glob("rank_*.json"))
        if len(json_files) < num_replicas:
            continue
        try:
            # make sure all json files are fully saved
            json_data = lmap(load_json, json_files)
            return json_data
        except JSONDecodeError:
            continue
    else:
        raise TimeoutError("Rank 0 gave up on waiting for other processes")
    # Unreachable

243
244
245
246

if __name__ == "__main__":
    # Usage for MT:
    run_generate()