test_modeling_flaubert.py 13.6 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre's avatar
Lysandre committed
21
22
23
24
25
26
27
28
29
30
31
32
33

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    from transformers import (
        FlaubertConfig,
        FlaubertModel,
        FlaubertWithLMHeadModel,
        FlaubertForQuestionAnswering,
        FlaubertForQuestionAnsweringSimple,
        FlaubertForSequenceClassification,
34
        FlaubertForTokenClassification,
35
        FlaubertForMultipleChoice,
Lysandre's avatar
Lysandre committed
36
    )
37
    from transformers.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
class FlaubertModelTester(object):
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 12
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = None
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
94
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

        config = FlaubertConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
Sylvain Gugger's avatar
Sylvain Gugger committed
113
            return_dict=True,
Lysandre's avatar
Lysandre committed
114
115
        )

116
        return (
Lysandre's avatar
Style  
Lysandre committed
117
118
119
120
121
122
123
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
124
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
125
            input_mask,
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_flaubert_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
140
        choice_labels,
141
142
143
144
145
        input_mask,
    ):
        model = FlaubertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
146
147
148
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
149
        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
150
            list(result["last_hidden_state"].size()), [self.batch_size, self.seq_length, self.hidden_size]
151
152
153
154
155
156
157
158
159
160
161
        )

    def create_and_check_flaubert_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
162
        choice_labels,
163
164
165
166
167
168
        input_mask,
    ):
        model = FlaubertWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
169
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
170
171
172
173
174
175
176
177
178
179
180
181
        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size])

    def create_and_check_flaubert_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
182
        choice_labels,
183
184
185
186
187
188
        input_mask,
    ):
        model = FlaubertForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
189
        result = model(input_ids)
190

Sylvain Gugger's avatar
Sylvain Gugger committed
191
        result = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
192
193
194
195
196
197
198
199
200
201
202
203
204
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

    def create_and_check_flaubert_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
205
        choice_labels,
206
207
208
209
210
211
        input_mask,
    ):
        model = FlaubertForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
212
        result = model(input_ids)
213

Sylvain Gugger's avatar
Sylvain Gugger committed
214
        result_with_labels = model(
Lysandre's avatar
Style  
Lysandre committed
215
            input_ids,
216
217
218
219
220
221
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
Lysandre's avatar
Lysandre committed
222

Sylvain Gugger's avatar
Sylvain Gugger committed
223
        result_with_labels = model(
224
225
226
227
228
229
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
Lysandre's avatar
Lysandre committed
230

Sylvain Gugger's avatar
Sylvain Gugger committed
231
        (total_loss,) = result_with_labels.to_tuple()
Lysandre's avatar
Lysandre committed
232

Sylvain Gugger's avatar
Sylvain Gugger committed
233
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Lysandre's avatar
Lysandre committed
234

Sylvain Gugger's avatar
Sylvain Gugger committed
235
        (total_loss,) = result_with_labels.to_tuple()
236

Sylvain Gugger's avatar
Sylvain Gugger committed
237
        self.parent.assertListEqual(list(result_with_labels["loss"].size()), [])
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        self.parent.assertListEqual(
            list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
        )
        self.parent.assertListEqual(
            list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
        )
        self.parent.assertListEqual(
            list(result["end_top_log_probs"].size()),
            [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(
            list(result["end_top_index"].size()), [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])

    def create_and_check_flaubert_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
262
        choice_labels,
263
264
265
266
267
268
        input_mask,
    ):
        model = FlaubertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
271
272
273
274

        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size])

275
276
277
278
279
280
281
282
283
    def create_and_check_flaubert_token_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
284
        choice_labels,
285
286
287
288
289
290
291
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = FlaubertForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
292
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
293
294
295
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
        self.check_loss_output(result)

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    def create_and_check_flaubert_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = FlaubertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
315
        result = model(
316
317
318
319
320
321
322
323
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
        self.check_loss_output(result)

324
325
326
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
Lysandre's avatar
Style  
Lysandre committed
327
328
329
330
331
332
333
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
334
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
335
            input_mask,
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class FlaubertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            FlaubertModel,
            FlaubertWithLMHeadModel,
            FlaubertForQuestionAnswering,
            FlaubertForQuestionAnsweringSimple,
            FlaubertForSequenceClassification,
351
            FlaubertForTokenClassification,
352
            FlaubertForMultipleChoice,
353
354
355
356
        )
        if is_torch_available()
        else ()
    )
Lysandre's avatar
Lysandre committed
357
358

    def setUp(self):
359
        self.model_tester = FlaubertModelTester(self)
Lysandre's avatar
Lysandre committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_flaubert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_model(*config_and_inputs)

    def test_flaubert_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)

    def test_flaubert_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_simple_qa(*config_and_inputs)

    def test_flaubert_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_qa(*config_and_inputs)

    def test_flaubert_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs)

385
386
387
388
    def test_flaubert_token_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_token_classif(*config_and_inputs)

389
390
391
392
    def test_flaubert_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
393
394
    @slow
    def test_model_from_pretrained(self):
395
        for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
396
            model = FlaubertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
397
            self.assertIsNotNone(model)