test_modeling_electra.py 11.8 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre Debut's avatar
Lysandre Debut committed
21
22
23
24
25
26
27
28
29
30
31
32

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    from transformers import (
        ElectraConfig,
        ElectraModel,
        ElectraForMaskedLM,
        ElectraForTokenClassification,
        ElectraForPreTraining,
Suraj Patil's avatar
Suraj Patil committed
33
        ElectraForMultipleChoice,
34
        ElectraForSequenceClassification,
35
        ElectraForQuestionAnswering,
Lysandre Debut's avatar
Lysandre Debut committed
36
    )
37
    from transformers.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre Debut's avatar
Lysandre Debut committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class ElectraModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Lysandre Debut's avatar
Lysandre Debut committed
66

67
68
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
69

70
71
72
        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
Lysandre Debut's avatar
Lysandre Debut committed
73

74
75
76
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
77

78
79
80
81
82
83
84
85
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
            fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
Lysandre Debut's avatar
Lysandre Debut committed
86

87
88
89
90
91
92
93
94
95
96
97
98
99
        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
100
            return_dict=True,
101
        )
Lysandre Debut's avatar
Lysandre Debut committed
102

103
        return (
Lysandre Debut's avatar
Lysandre Debut committed
104
105
106
107
108
109
110
111
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
112
        )
Lysandre Debut's avatar
Lysandre Debut committed
113

114
115
    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])
Lysandre Debut's avatar
Lysandre Debut committed
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
    def create_and_check_electra_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
134
        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
135
            list(result["last_hidden_state"].size()), [self.batch_size, self.seq_length, self.hidden_size]
136
        )
Lysandre Debut's avatar
Lysandre Debut committed
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def create_and_check_electra_for_masked_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
152
153
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size])
154
        self.check_loss_output(result)
Lysandre Debut's avatar
Lysandre Debut committed
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    def create_and_check_electra_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
171
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
        self.check_loss_output(result)

    def create_and_check_electra_for_pretraining(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
190
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

    def create_and_check_electra_for_sequence_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
209
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
        self.check_loss_output(result)

    def create_and_check_electra_for_question_answering(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
227
        result = model(
228
            input_ids,
229
230
231
232
233
234
235
236
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)
237

Suraj Patil's avatar
Suraj Patil committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def create_and_check_electra_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_choices = self.num_choices
        model = ElectraForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
256
        result = model(
Suraj Patil's avatar
Suraj Patil committed
257
258
259
260
261
262
263
264
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
        self.check_loss_output(result)

265
266
267
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
268
269
270
271
272
273
274
275
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
276
277
278
279
280
281
282
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
283

284
285
286
287
288
289
290
291
292
293
294
295
    all_model_classes = (
        (
            ElectraModel,
            ElectraForPreTraining,
            ElectraForMaskedLM,
            ElectraForTokenClassification,
            ElectraForSequenceClassification,
            ElectraForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
Lysandre Debut's avatar
Lysandre Debut committed
296
297

    def setUp(self):
298
        self.model_tester = ElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_electra_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)

    def test_for_pre_training(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)

320
321
322
323
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)

324
325
326
327
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
328
329
330
331
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
332
333
    @slow
    def test_model_from_pretrained(self):
334
        for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
335
            model = ElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
336
            self.assertIsNotNone(model)