test_modeling_xglm.py 21.3 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datetime
Yih-Dar's avatar
Yih-Dar committed
17
import gc
Suraj Patil's avatar
Suraj Patil committed
18
19
20
21
import math
import unittest

from transformers import XGLMConfig, is_torch_available
22
23
24
25
26
27
28
from transformers.testing_utils import (
    require_torch,
    require_torch_accelerator,
    require_torch_fp16,
    slow,
    torch_device,
)
Suraj Patil's avatar
Suraj Patil committed
29

30
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
31
from ...test_configuration_common import ConfigTester
32
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
33
from ...test_pipeline_mixin import PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


if is_torch_available():
    import torch

    from transformers import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMTokenizer


class XGLMModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        d_model=32,
53
        num_hidden_layers=2,
Suraj Patil's avatar
Suraj Patil committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        num_attention_heads=4,
        ffn_dim=37,
        activation_function="gelu",
        activation_dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = d_model
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.ffn_dim = ffn_dim
        self.activation_function = activation_function
        self.activation_dropout = activation_dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = None
        self.bos_token_id = 0
        self.eos_token_id = 2
        self.pad_token_id = 1

    def get_large_model_config(self):
        return XGLMConfig.from_pretrained("facebook/xglm-564M")

    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config(gradient_checkpointing=gradient_checkpointing)

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
        )

    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
        return XGLMConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            num_layers=self.num_hidden_layers,
            attention_heads=self.num_attention_heads,
            ffn_dim=self.ffn_dim,
            activation_function=self.activation_function,
            activation_dropout=self.activation_dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            gradient_checkpointing=gradient_checkpointing,
        )

    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_xglm_model(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, head_mask=head_mask)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.past_key_values), config.num_hidden_layers)

    def create_and_check_xglm_model_past(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_xglm_model_attention_mask_past(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMModel(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.zeros((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_xglm_model_past_large_inputs(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, use_cache=True)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=1)

        # append to next input_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[
            "last_hidden_state"
        ]
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, *args):
        model = XGLMForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, *args, gradient_checkpointing=False
    ):
        model = XGLMForCausalLM(config)
        model.to(torch_device)
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()

        result = model(input_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def create_and_check_xglm_weight_initialization(self, config, *args):
        model = XGLMModel(config)
        model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers)
        for key in model.state_dict().keys():
            if "c_proj" in key and "weight" in key:
                self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
                self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


@require_torch
305
class XGLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
306
307
    all_model_classes = (XGLMModel, XGLMForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (XGLMForCausalLM,) if is_torch_available() else ()
308
309
310
    pipeline_model_mapping = (
        {"feature-extraction": XGLMModel, "text-generation": XGLMForCausalLM} if is_torch_available() else {}
    )
311
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    test_missing_keys = False
    test_pruning = False

    def setUp(self):
        self.model_tester = XGLMModelTester(self)
        self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xglm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xglm_model(*config_and_inputs)

    def test_xglm_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xglm_model_past(*config_and_inputs)

    def test_xglm_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xglm_model_attention_mask_past(*config_and_inputs)

    def test_xglm_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xglm_model_past_large_inputs(*config_and_inputs)

    def test_xglm_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_xglm_gradient_checkpointing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)

    def test_xglm_weight_initialization(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xglm_weight_initialization(*config_and_inputs)

350
351
352
353
354
355
    @slow
    def test_model_from_pretrained(self):
        for model_name in XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = XGLMModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

356
357
358
359
    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
    def test_model_parallelism(self):
        super().test_model_parallelism()

360
361
362

@require_torch
class XGLMModelLanguageGenerationTest(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
363
364
365
366
367
368
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    def _test_lm_generate_xglm_helper(
        self,
        gradient_checkpointing=False,
        verify_outputs=True,
    ):
        model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M")
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
        else:
            model.gradient_checkpointing_disable()
        model.to(torch_device)
        input_ids = torch.tensor([[2, 268, 9865]], dtype=torch.long, device=torch_device)  # The dog
        # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
        # fmt: off
        expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
        # fmt: on
        output_ids = model.generate(input_ids, do_sample=False, num_beams=1)
        if verify_outputs:
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

Suraj Patil's avatar
Suraj Patil committed
389
390
391
392
393
394
395
396
397
398
    @slow
    def test_batch_generation(self):
        model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M")
        model.to(torch_device)
        tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")

        tokenizer.padding_side = "left"

        # use different length sentences to test batching
        sentences = [
399
400
401
            "This is an extremelly long sentence that only exists to test the ability of the model to cope with "
            "left-padding, such as in batched generation. The output for the sequence below should be the same "
            "regardless of whether left padding is applied or not. When",
Suraj Patil's avatar
Suraj Patil committed
402
403
404
405
406
407
408
            "Hello, my dog is a little",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)

        outputs = model.generate(
409
            input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), max_new_tokens=12
Suraj Patil's avatar
Suraj Patil committed
410
411
412
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
413
        output_non_padded = model.generate(input_ids=inputs_non_padded, max_new_tokens=12)
Suraj Patil's avatar
Suraj Patil committed
414
415

        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
416
        output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=12)
Suraj Patil's avatar
Suraj Patil committed
417
418
419
420
421
422

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
423
424
425
426
            "This is an extremelly long sentence that only exists to test the ability of the model to cope with "
            "left-padding, such as in batched generation. The output for the sequence below should be the same "
            "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
            "a single",
Suraj Patil's avatar
Suraj Patil committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
            "Hello, my dog is a little bit of a shy one, but he is very friendly",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_lm_generate_xglm(self):
        self._test_lm_generate_xglm_helper()

    @slow
    def test_lm_generate_xglm_with_gradient_checkpointing(self):
        self._test_lm_generate_xglm_helper(gradient_checkpointing=True)

    @slow
    def test_xglm_sample(self):
        tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
        model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M")

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt")
447
        input_ids = tokenized.input_ids
Suraj Patil's avatar
Suraj Patil committed
448
449
450
        output_ids = model.generate(input_ids, do_sample=True, num_beams=1)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

451
452
453
454
455
456
457
458
        EXPECTED_OUTPUT_STRS = [
            # TODO: remove this once we move to torch 2.0
            # torch 1.13.1 + cu116
            "Today is a nice day and the sun is shining. A nice day with warm rainy",
            # torch 2.0 + cu117
            "Today is a nice day and the water is still cold. We just stopped off for some fresh",
        ]
        self.assertIn(output_str, EXPECTED_OUTPUT_STRS)
Suraj Patil's avatar
Suraj Patil committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

    @slow
    def test_xglm_sample_max_time(self):
        tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M")
        model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M")
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt")
        input_ids = tokenized.input_ids.to(torch_device)

        MAX_TIME = 0.15

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=1.25 * MAX_TIME))
500

501
502
    @require_torch_accelerator
    @require_torch_fp16
503
504
505
506
    def test_batched_nan_fp16(self):
        model_name = "facebook/xglm-564M"
        tokenizer = XGLMTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left")

507
        model = XGLMForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).to(torch_device)
508
509
510
511
        model = model.eval()

        batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt")

512
513
        input_ids = batch["input_ids"].to(torch_device)
        attention_mask = batch["attention_mask"].to(torch_device)
514
515
516
517
518
519

        with torch.no_grad():
            outputs = model(input_ids, attention_mask=attention_mask)
            self.assertFalse(
                torch.isnan(outputs.logits[0]).any().item()
            )  # the first logits could contain NaNs if it fails