README.md 2.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Token classification

## PyTorch version, no Trainer

Fine-tuning (m)LUKE for token classification task such as Named Entity Recognition (NER), Parts-of-speech
tagging (POS) or phrase extraction (CHUNKS). You can easily
customize it to your needs if you need extra processing on your datasets.

It will either run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for
training and validation, you might just need to add some tweaks in the data preprocessing.

The script can be  run in a distributed setup, on TPU and supports mixed precision by
the mean of the [馃 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally
after installing it:

```bash
17
pip install git+https://github.com/huggingface/accelerate
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
```

then to train English LUKE on CoNLL2003:

```bash
export TASK_NAME=ner

python run_luke_ner_no_trainer.py \
  --model_name_or_path studio-ousia/luke-base \
  --dataset_name conll2003 \
  --task_name $TASK_NAME \
  --max_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/
```

You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run

```bash
accelerate config
```

and reply to the questions asked. Then

```bash
accelerate test
```

that will check everything is ready for training. Finally, you can launch training with

```bash
export TASK_NAME=ner

accelerate launch run_ner_no_trainer.py \
  --model_name_or_path studio-ousia/luke-base \
  --dataset_name conll2003 \
  --task_name $TASK_NAME \
  --max_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/
```

This command is the same and will work for:

- a CPU-only setup
- a setup with one GPU
- a distributed training with several GPUs (single or multi node)
- a training on TPUs

Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.