run_ner.py 29.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Matt Maybeno's avatar
Matt Maybeno committed
16
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
17
18
19
20
21
22
23
24
25
26


import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
27
from seqeval.metrics import f1_score, precision_score, recall_score
28
29
30
31
32
from tensorboardX import SummaryWriter
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
Aymeric Augustin's avatar
Aymeric Augustin committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

from transformers import (
    WEIGHTS_NAME,
    AdamW,
    BertConfig,
    BertForTokenClassification,
    BertTokenizer,
    CamembertConfig,
    CamembertForTokenClassification,
    CamembertTokenizer,
    DistilBertConfig,
    DistilBertForTokenClassification,
    DistilBertTokenizer,
    RobertaConfig,
    RobertaForTokenClassification,
    RobertaTokenizer,
    XLMRobertaConfig,
    XLMRobertaForTokenClassification,
    XLMRobertaTokenizer,
    get_linear_schedule_with_warmup,
)
54
55
56
57
58
59
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file


logger = logging.getLogger(__name__)

ALL_MODELS = sum(
60
61
62
63
64
65
    (
        tuple(conf.pretrained_config_archive_map.keys())
        for conf in (BertConfig, RobertaConfig, DistilBertConfig, CamembertConfig, XLMRobertaConfig)
    ),
    (),
)
66
67
68

MODEL_CLASSES = {
    "bert": (BertConfig, BertForTokenClassification, BertTokenizer),
69
    "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer),
70
71
    "distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer),
    "camembert": (CamembertConfig, CamembertForTokenClassification, CamembertTokenizer),
72
    "xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer),
73
74
75
76
77
78
79
80
81
82
83
}


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


84
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
102
103
104
105
106
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
107
108
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
109
110
111
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
112
113

    # Check if saved optimizer or scheduler states exist
114
115
116
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
117
        # Load in optimizer and scheduler states
118
119
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
120

121
122
123
124
125
126
127
128
129
130
131
132
133
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
134
135
136
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
137
138
139
140
141
142

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
143
144
145
146
147
148
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
149
150
151
152
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
153
154
155
156
157
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
158
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
159
160
161
162
163
164
165
166
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

167
168
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
169
170
171
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
172
    set_seed(args)  # Added here for reproductibility
173
174
175
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
176
177
178
179
180
181

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

182
183
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
184
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
185
            if args.model_type != "distilbert":
186
187
188
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM and RoBERTa don"t use segment_ids
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
206
207
208
209
210
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

211
212
213
214
215
216
217
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
218
219
220
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
221
                        results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
222
223
224
225
226
227
228
229
230
231
232
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
233
234
235
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
236
                    model_to_save.save_pretrained(output_dir)
237
238
                    tokenizer.save_pretrained(output_dir)

239
240
241
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

242
243
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
244
245
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

246
247
248
249
250
251
252
253
254
255
256
257
258
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


259
260
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""):
    eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode)
261
262
263
264
265
266

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
267
268
269
270
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

271
272
273
274
275
276
277
278
279
280
281
282
283
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
284
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
285
            if args.model_type != "distilbert":
286
287
288
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM and RoBERTa don"t use segment_ids
289
290
291
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]

292
293
294
            if args.n_gpu > 1:
                tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu parallel evaluating

295
296
297
298
299
300
301
302
303
304
305
306
            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = inputs["labels"].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

307
    label_map = {i: label for i, label in enumerate(labels)}
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(label_map[out_label_ids[i][j]])
                preds_list[i].append(label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
322
        "f1": f1_score(out_label_list, preds_list),
323
324
325
326
327
328
    }

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

329
    return results, preds_list
330
331


332
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode):
333
334
335
336
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
337
338
339
340
341
342
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}".format(
            mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length)
        ),
    )
343
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
344
345
346
347
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
348
        examples = read_examples_from_file(args.data_dir, mode)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        features = convert_examples_to_features(
            examples,
            labels,
            args.max_seq_length,
            tokenizer,
            cls_token_at_end=bool(args.model_type in ["xlnet"]),
            # xlnet has a cls token at the end
            cls_token=tokenizer.cls_token,
            cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
            sep_token=tokenizer.sep_token,
            sep_token_extra=bool(args.model_type in ["roberta"]),
            # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
            pad_on_left=bool(args.model_type in ["xlnet"]),
            # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
            pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
            pad_token_label_id=pad_token_label_id,
        )
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset


def main():
    parser = argparse.ArgumentParser()

387
    # Required parameters
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
416

417
    # Other parameters
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    parser.add_argument(
        "--labels",
        default="",
        type=str,
        help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action="store_true",
        help="Whether to run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
512
513
514
515
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
    args = parser.parse_args()

516
517
518
519
520
521
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
522
523
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
524
525
526
                args.output_dir
            )
        )
527
528
529
530
531

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Setup logging
549
550
551
552
553
554
555
556
557
558
559
560
561
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
562
563
564
565
566

    # Set seed
    set_seed(args)

    # Prepare CONLL-2003 task
567
568
    labels = get_labels(args.labels)
    num_labels = len(labels)
569
570
571
572
573
574
575
576
577
    # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
    pad_token_label_id = CrossEntropyLoss().ignore_index

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
594
595
596
597
598
599
600
601
602
603

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
604
        train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train")
605
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id)
606
607
608
609
610
611
612
613
614
615
616
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
617
618
619
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
620
621
622
623
624
625
626
627
628
629
630
631
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
632
633
634
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
635
636
637
638
639
640
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
641
            result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step)
642
643
644
645
646
647
648
649
            if global_step:
                result = {"{}_{}".format(global_step, k): v for k, v in result.items()}
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        model = model_class.from_pretrained(args.output_dir)
        model.to(args.device)
        result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="test")
        # Save results
        output_test_results_file = os.path.join(args.output_dir, "test_results.txt")
        with open(output_test_results_file, "w") as writer:
            for key in sorted(result.keys()):
                writer.write("{} = {}\n".format(key, str(result[key])))
        # Save predictions
        output_test_predictions_file = os.path.join(args.output_dir, "test_predictions.txt")
        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(args.data_dir, "test.txt"), "r") as f:
                example_id = 0
                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)
                        if not predictions[example_id]:
                            example_id += 1
                    elif predictions[example_id]:
                        output_line = line.split()[0] + " " + predictions[example_id].pop(0) + "\n"
                        writer.write(output_line)
                    else:
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

676
677
678
679
680
    return results


if __name__ == "__main__":
    main()