modeling_tf_bert.py 53.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 BERT model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import numpy as np
import tensorflow as tf

from .configuration_bert import BertConfig
thomwolf's avatar
thomwolf committed
31
from .modeling_tf_utils import TFPreTrainedModel, get_initializer
thomwolf's avatar
thomwolf committed
32
from .file_utils import add_start_docstrings
33
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
thomwolf's avatar
thomwolf committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

logger = logging.getLogger(__name__)


TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-tf_model.h5",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-tf_model.h5",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-tf_model.h5",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-tf_model.h5",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-tf_model.h5",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-tf_model.h5",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-tf_model.h5",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-tf_model.h5",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-tf_model.h5",
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-tf_model.h5",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-tf_model.h5",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-tf_model.h5",
}


55
56
def load_bert_pt_weights_in_tf2(tf_model, pytorch_checkpoint_path):
    # build the network
thomwolf's avatar
thomwolf committed
57
58
    inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
    tf_inputs = tf.constant(inputs_list)
59
    tfo = tf_model(tf_inputs, training=False)
60
    return load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=tf_inputs)
thomwolf's avatar
thomwolf committed
61
62
63


def gelu(x):
thomwolf's avatar
thomwolf committed
64
65
66
67
68
69
70
71
72
73
    """ Gaussian Error Linear Unit.
    Original Implementation of the gelu activation function in Google Bert repo when initialy created.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        Also see https://arxiv.org/abs/1606.08415
    """
    cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0)))
    return x * cdf

def gelu_new(x):
thomwolf's avatar
thomwolf committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.tanh(
        (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
    return x * cdf

def swish(x):
    return x * tf.sigmoid(x)


ACT2FN = {"gelu": tf.keras.layers.Activation(gelu),
          "relu": tf.keras.activations.relu,
thomwolf's avatar
thomwolf committed
92
93
          "swish": tf.keras.layers.Activation(swish),
          "gelu_new": tf.keras.layers.Activation(gelu_new)}
thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100


class TFBertEmbeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config, **kwargs):
        super(TFBertEmbeddings, self).__init__(**kwargs)
101
102
        self.vocab_size = config.vocab_size
        self.hidden_size = config.hidden_size
thomwolf's avatar
thomwolf committed
103
        self.initializer_range = config.initializer_range
104

thomwolf's avatar
thomwolf committed
105
106
107
108
109
110
111
112
        self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings,
                                                             config.hidden_size,
                                                             embeddings_initializer=get_initializer(self.initializer_range),
                                                             name='position_embeddings')
        self.token_type_embeddings = tf.keras.layers.Embedding(config.type_vocab_size,
                                                               config.hidden_size,
                                                               embeddings_initializer=get_initializer(self.initializer_range),
                                                               name='token_type_embeddings')
thomwolf's avatar
thomwolf committed
113
114
115
116
117
118

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

119
120
121
122
123
124
125
126
    def build(self, input_shape):
        """Build shared word embedding layer """
        with tf.name_scope("word_embeddings"):
            # Create and initialize weights. The random normal initializer was chosen
            # arbitrarily, and works well.
            self.word_embeddings = self.add_weight(
                "weight",
                shape=[self.vocab_size, self.hidden_size],
thomwolf's avatar
thomwolf committed
127
                initializer=get_initializer(self.initializer_range))
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        super(TFBertEmbeddings, self).build(input_shape)

    def call(self, inputs, mode="embedding", training=False):
        """Get token embeddings of inputs.
        Args:
            inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
            mode: string, a valid value is one of "embedding" and "linear".
        Returns:
            outputs: (1) If mode == "embedding", output embedding tensor, float32 with
                shape [batch_size, length, embedding_size]; (2) mode == "linear", output
                linear tensor, float32 with shape [batch_size, length, vocab_size].
        Raises:
            ValueError: if mode is not valid.
        
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        if mode == "embedding":
            return self._embedding(inputs, training=training)
        elif mode == "linear":
            return self._linear(inputs)
        else:
            raise ValueError("mode {} is not valid.".format(mode))

    def _embedding(self, inputs, training=False):
        """Applies embedding based on inputs tensor."""
thomwolf's avatar
thomwolf committed
154
155
156
157
158
159
160
161
        input_ids, position_ids, token_type_ids = inputs

        seq_length = tf.shape(input_ids)[1]
        if position_ids is None:
            position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
        if token_type_ids is None:
            token_type_ids = tf.fill(tf.shape(input_ids), 0)

162
        words_embeddings = tf.gather(self.word_embeddings, input_ids)
thomwolf's avatar
thomwolf committed
163
164
165
166
167
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
thomwolf's avatar
thomwolf committed
168
        embeddings = self.dropout(embeddings, training=training)
thomwolf's avatar
thomwolf committed
169
170
        return embeddings

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def _linear(self, inputs):
        """Computes logits by running inputs through a linear layer.
            Args:
                inputs: A float32 tensor with shape [batch_size, length, hidden_size]
            Returns:
                float32 tensor with shape [batch_size, length, vocab_size].
        """
        batch_size = tf.shape(inputs)[0]
        length = tf.shape(inputs)[1]

        x = tf.reshape(inputs, [-1, self.hidden_size])
        logits = tf.matmul(x, self.word_embeddings, transpose_b=True)

        return tf.reshape(logits, [batch_size, length, self.vocab_size])

thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

class TFBertSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertSelfAttention, self).__init__(**kwargs)
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        assert config.hidden_size % config.num_attention_heads == 0
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
207
208
209
        self.query = tf.keras.layers.Dense(self.all_head_size,
                                           kernel_initializer=get_initializer(self.config.initializer_range),
                                           name='query')
        self.key = tf.keras.layers.Dense(self.all_head_size,
                                         kernel_initializer=get_initializer(self.config.initializer_range),
                                         name='key')
        self.value = tf.keras.layers.Dense(self.all_head_size,
                                           kernel_initializer=get_initializer(self.config.initializer_range),
                                           name='value')
thomwolf's avatar
thomwolf committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

        self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x, batch_size):
        x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
        return tf.transpose(x, perm=[0, 2, 1, 3])

    def call(self, inputs, training=False):
        hidden_states, attention_mask, head_mask = inputs

        batch_size = tf.shape(hidden_states)[0]
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
        key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
        value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)  # (batch size, num_heads, seq_len_q, seq_len_k)
        dk = tf.cast(tf.shape(key_layer)[-1], tf.float32) # scale attention_scores
        attention_scores = attention_scores / tf.math.sqrt(dk)
thomwolf's avatar
thomwolf committed
233
234
235
236

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
            attention_scores = attention_scores + attention_mask
thomwolf's avatar
thomwolf committed
237
238
239
240

        # Normalize the attention scores to probabilities.
        attention_probs = tf.nn.softmax(attention_scores, axis=-1)

thomwolf's avatar
thomwolf committed
241
242
243
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs, training=training)
thomwolf's avatar
thomwolf committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = tf.matmul(attention_probs, value_layer)

        context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
        context_layer = tf.reshape(context_layer, 
                                  (batch_size, -1, self.all_head_size))  # (batch_size, seq_len_q, all_head_size)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
        return outputs


class TFBertSelfOutput(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertSelfOutput, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
262
263
264
        self.dense = tf.keras.layers.Dense(config.hidden_size,
                                           kernel_initializer=get_initializer(self.config.initializer_range),
                                           name='dense')
thomwolf's avatar
thomwolf committed
265
266
267
268
269
270
271
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

    def call(self, inputs, training=False):
        hidden_states, input_tensor = inputs

        hidden_states = self.dense(hidden_states)
thomwolf's avatar
thomwolf committed
272
        hidden_states = self.dropout(hidden_states, training=training)
thomwolf's avatar
thomwolf committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class TFBertAttention(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertAttention, self).__init__(**kwargs)
        self.self_attention = TFBertSelfAttention(config, name='self')
        self.dense_output = TFBertSelfOutput(config, name='output')

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(self, inputs, training=False):
        input_tensor, attention_mask, head_mask = inputs

        self_outputs = self.self_attention([input_tensor, attention_mask, head_mask], training=training)
        attention_output = self.dense_output([self_outputs[0], input_tensor], training=training)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class TFBertIntermediate(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertIntermediate, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
298
299
300
        self.dense = tf.keras.layers.Dense(config.intermediate_size,
                                           kernel_initializer=get_initializer(self.config.initializer_range),
                                           name='dense')
thomwolf's avatar
thomwolf committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def call(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class TFBertOutput(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertOutput, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
315
316
317
        self.dense = tf.keras.layers.Dense(config.hidden_size,
                                           kernel_initializer=get_initializer(self.config.initializer_range),
                                           name='dense')
thomwolf's avatar
thomwolf committed
318
319
320
321
322
323
324
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)

    def call(self, inputs, training=False):
        hidden_states, input_tensor = inputs

        hidden_states = self.dense(hidden_states)
thomwolf's avatar
thomwolf committed
325
        hidden_states = self.dropout(hidden_states, training=training)
thomwolf's avatar
thomwolf committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class TFBertLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertLayer, self).__init__(**kwargs)
        self.attention = TFBertAttention(config, name='attention')
        self.intermediate = TFBertIntermediate(config, name='intermediate')
        self.bert_output = TFBertOutput(config, name='output')

    def call(self, inputs, training=False):
        hidden_states, attention_mask, head_mask = inputs

        attention_outputs = self.attention([hidden_states, attention_mask, head_mask], training=training)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.bert_output([intermediate_output, attention_output], training=training)
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
        return outputs


class TFBertEncoder(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertEncoder, self).__init__(**kwargs)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
353
        self.layer = [TFBertLayer(config, name='layer_._{}'.format(i)) for i in range(config.num_hidden_layers)]
thomwolf's avatar
thomwolf committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    def call(self, inputs, training=False):
        hidden_states, attention_mask, head_mask = inputs

        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module([hidden_states, attention_mask, head_mask[i]], training=training)
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # outputs, (hidden states), (attentions)


class TFBertPooler(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertPooler, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
385
386
387
388
        self.dense = tf.keras.layers.Dense(config.hidden_size,
                                           kernel_initializer=get_initializer(self.config.initializer_range),
                                           activation='tanh',
                                           name='dense')
thomwolf's avatar
thomwolf committed
389
390
391
392
393
394
395
396
397
398
399
400

    def call(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        return pooled_output


class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertPredictionHeadTransform, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
401
402
403
        self.dense = tf.keras.layers.Dense(config.hidden_size,
                                           kernel_initializer=get_initializer(self.config.initializer_range),
                                           name='dense')
thomwolf's avatar
thomwolf committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')

    def call(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class TFBertLMPredictionHead(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
418
    def __init__(self, config, input_embeddings, **kwargs):
thomwolf's avatar
thomwolf committed
419
420
421
422
423
424
        super(TFBertLMPredictionHead, self).__init__(**kwargs)
        self.vocab_size = config.vocab_size
        self.transform = TFBertPredictionHeadTransform(config, name='transform')

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
thomwolf's avatar
thomwolf committed
425
        self.input_embeddings = input_embeddings
thomwolf's avatar
thomwolf committed
426
427
428
429
430
431

    def build(self, input_shape):
        self.bias = self.add_weight(shape=(self.vocab_size,),
                                    initializer='zeros',
                                    trainable=True,
                                    name='bias')
thomwolf's avatar
thomwolf committed
432
        super(TFBertLMPredictionHead, self).build(input_shape)
thomwolf's avatar
thomwolf committed
433
434
435

    def call(self, hidden_states):
        hidden_states = self.transform(hidden_states)
thomwolf's avatar
thomwolf committed
436
437
        hidden_states = self.input_embeddings(hidden_states, mode="linear")
        hidden_states = hidden_states + self.bias
thomwolf's avatar
thomwolf committed
438
439
440
441
        return hidden_states


class TFBertMLMHead(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
442
    def __init__(self, config, input_embeddings, **kwargs):
thomwolf's avatar
thomwolf committed
443
        super(TFBertMLMHead, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
444
        self.predictions = TFBertLMPredictionHead(config, input_embeddings, name='predictions')
thomwolf's avatar
thomwolf committed
445
446
447
448
449
450
451
452
453

    def call(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class TFBertNSPHead(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertNSPHead, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
454
455
456
        self.seq_relationship = tf.keras.layers.Dense(2,
                                                      kernel_initializer=get_initializer(self.config.initializer_range),
                                                      name='seq_relationship')
thomwolf's avatar
thomwolf committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

    def call(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class TFBertMainLayer(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super(TFBertMainLayer, self).__init__(**kwargs)
        self.num_hidden_layers = config.num_hidden_layers

        self.embeddings = TFBertEmbeddings(config, name='embeddings')
        self.encoder = TFBertEncoder(config, name='encoder')
        self.pooler = TFBertPooler(config, name='pooler')

    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
482
483
    def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
        if isinstance(inputs, (tuple, list)):
thomwolf's avatar
thomwolf committed
484
            input_ids = inputs[0]
thomwolf's avatar
thomwolf committed
485
486
487
488
            attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
            token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
            position_ids = inputs[3] if len(inputs) > 3 else position_ids
            head_mask = inputs[4] if len(inputs) > 4 else head_mask
thomwolf's avatar
thomwolf committed
489
            assert len(inputs) <= 5, "Too many inputs."
thomwolf's avatar
thomwolf committed
490
        elif isinstance(inputs, dict):
thomwolf's avatar
thomwolf committed
491
            input_ids = inputs.get('input_ids')
thomwolf's avatar
thomwolf committed
492
493
494
495
            attention_mask = inputs.get('attention_mask', attention_mask)
            token_type_ids = inputs.get('token_type_ids', token_type_ids)
            position_ids = inputs.get('position_ids', position_ids)
            head_mask = inputs.get('head_mask', head_mask)
thomwolf's avatar
thomwolf committed
496
            assert len(inputs) <= 5, "Too many inputs."
thomwolf's avatar
thomwolf committed
497
498
        else:
            input_ids = inputs
thomwolf's avatar
thomwolf committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

        if attention_mask is None:
            attention_mask = tf.fill(tf.shape(input_ids), 1)
        if token_type_ids is None:
            token_type_ids = tf.fill(tf.shape(input_ids), 0)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.

        extended_attention_mask = tf.cast(extended_attention_mask, tf.float32)
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if not head_mask is None:
            raise NotImplementedError
        else:
            head_mask = [None] * self.num_hidden_layers
            # head_mask = tf.constant([0] * self.num_hidden_layers)

        embedding_output = self.embeddings([input_ids, position_ids, token_type_ids], training=training)
        encoder_outputs = self.encoder([embedding_output, extended_attention_mask, head_mask], training=training)

        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)

thomwolf's avatar
thomwolf committed
541

thomwolf's avatar
thomwolf committed
542
543
544
545
546
547
class TFBertPreTrainedModel(TFPreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = BertConfig
    pretrained_model_archive_map = TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
548
    load_pt_weights = load_bert_pt_weights_in_tf2
thomwolf's avatar
thomwolf committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    base_model_prefix = "bert"


BERT_START_DOCSTRING = r"""    The BERT model was proposed in
    `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.

    This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.

    .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805

    .. _`tf.keras.Model`:
        https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model

thomwolf's avatar
thomwolf committed
567
568
569
570
571
572
573
574
575
    Note on the model inputs:
        TF 2.0 models accepts two formats as inputs:

            - having all inputs as keyword arguments (like PyTorch models), or
            - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
thomwolf's avatar
thomwolf committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

        - a single Tensor with input_ids only and nothing else: `model(inputs_ids)
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
            `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associaed to the input names given in the docstring:
            `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`

    Parameters:
        config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. 
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

BERT_INPUTS_DOCSTRING = r"""
    Inputs:
thomwolf's avatar
thomwolf committed
591
        **input_ids**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
                
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
                
                ``token_type_ids:   0   0   0   0  0     0   0``

            Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
thomwolf's avatar
thomwolf committed
613
        **attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
614
615
616
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
617
        **token_type_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
618
619
620
621
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
thomwolf's avatar
thomwolf committed
622
        **position_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
623
624
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
625
        **head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
626
627
628
629
630
631
632
633
634
635
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
                      BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertModel(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
636
        **last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)``
thomwolf's avatar
thomwolf committed
637
            Sequence of hidden-states at the output of the last layer of the model.
thomwolf's avatar
thomwolf committed
638
        **pooler_output**: ``tf.Tensor`` of shape ``(batch_size, hidden_size)``
thomwolf's avatar
thomwolf committed
639
640
641
642
643
644
645
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
646
            list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
647
648
649
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
650
            list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
651
652
653
654
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
655
656
657
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertModel

thomwolf's avatar
thomwolf committed
658
659
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertModel.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
660
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
661
662
663
664
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
thomwolf's avatar
thomwolf committed
665
666
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertModel, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
667
668
        self.bert = TFBertMainLayer(config, name='bert')

thomwolf's avatar
thomwolf committed
669
670
    def call(self, inputs, **kwargs):
        outputs = self.bert(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
671
672
673
674
675
676
677
678
679
        return outputs


@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
    a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForPreTraining(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
680
        **prediction_scores**: ```tf.Tensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
thomwolf's avatar
thomwolf committed
681
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
thomwolf's avatar
thomwolf committed
682
        **seq_relationship_scores**: ```tf.Tensor`` of shape ``(batch_size, sequence_length, 2)``
thomwolf's avatar
thomwolf committed
683
684
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
685
            list of ```tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
686
687
688
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
689
            list of ```tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
690
691
692
693
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
694
695
696
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertForPreTraining

thomwolf's avatar
thomwolf committed
697
698
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForPreTraining.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
699
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
700
701
702
703
        outputs = model(input_ids)
        prediction_scores, seq_relationship_scores = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
704
705
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForPreTraining, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
706
707

        self.bert = TFBertMainLayer(config, name='bert')
708
709
        self.nsp = TFBertNSPHead(config, name='nsp___cls')
        self.mlm = TFBertMLMHead(config, self.bert.embeddings, name='mlm___cls')
thomwolf's avatar
thomwolf committed
710

thomwolf's avatar
thomwolf committed
711
712
    def call(self, inputs, **kwargs):
        outputs = self.bert(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
713
714

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
715
        prediction_scores = self.mlm(sequence_output, training=kwargs.get('training', False))
716
        seq_relationship_score = self.nsp(pooled_output)
thomwolf's avatar
thomwolf committed
717
718
719
720
721
722
723
724
725
726
727

        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # prediction_scores, seq_relationship_score, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForMaskedLM(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
728
        **prediction_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
thomwolf's avatar
thomwolf committed
729
730
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
731
            list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
732
733
734
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
735
            list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
736
737
738
739
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
740
741
742
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertForMaskedLM

thomwolf's avatar
thomwolf committed
743
744
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForMaskedLM.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
745
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
746
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
747
        prediction_scores = outputs[0]
thomwolf's avatar
thomwolf committed
748
749

    """
thomwolf's avatar
thomwolf committed
750
751
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForMaskedLM, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
752
753

        self.bert = TFBertMainLayer(config, name='bert')
754
        self.mlm = TFBertMLMHead(config, self.bert.embeddings, name='mlm___cls')
thomwolf's avatar
thomwolf committed
755

thomwolf's avatar
thomwolf committed
756
757
    def call(self, inputs, **kwargs):
        outputs = self.bert(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
758
759

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
760
        prediction_scores = self.mlm(sequence_output, training=kwargs.get('training', False))
thomwolf's avatar
thomwolf committed
761
762
763
764
765
766
767
768
769
770
771

        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here

        return outputs  # prediction_scores, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
772
        **seq_relationship_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, 2)``
thomwolf's avatar
thomwolf committed
773
774
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
775
            list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
776
777
778
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
779
            list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
780
781
782
783
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
784
785
786
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertForNextSentencePrediction

thomwolf's avatar
thomwolf committed
787
788
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForNextSentencePrediction.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
789
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
790
791
792
793
        outputs = model(input_ids)
        seq_relationship_scores = outputs[0]

    """
thomwolf's avatar
thomwolf committed
794
795
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForNextSentencePrediction, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
796
797

        self.bert = TFBertMainLayer(config, name='bert')
798
        self.nsp = TFBertNSPHead(config, name='nsp___cls')
thomwolf's avatar
thomwolf committed
799

thomwolf's avatar
thomwolf committed
800
801
    def call(self, inputs, **kwargs):
        outputs = self.bert(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
802
803

        pooled_output = outputs[1]
804
        seq_relationship_score = self.nsp(pooled_output)
thomwolf's avatar
thomwolf committed
805
806
807
808

        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
809
810
811
812
813
814
815
816


@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForSequenceClassification(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
817
        **logits**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, config.num_labels)``
thomwolf's avatar
thomwolf committed
818
819
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
820
            list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
821
822
823
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
824
            list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
825
826
827
828
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
829
830
831
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertForSequenceClassification

thomwolf's avatar
thomwolf committed
832
833
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
834
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
835
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
836
        logits = outputs[0]
thomwolf's avatar
thomwolf committed
837
838

    """
thomwolf's avatar
thomwolf committed
839
840
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForSequenceClassification, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
841
842
843
844
        self.num_labels = config.num_labels

        self.bert = TFBertMainLayer(config, name='bert')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
845
846
847
        self.classifier = tf.keras.layers.Dense(config.num_labels,
                                                kernel_initializer=get_initializer(self.config.initializer_range),
                                                name='classifier')
thomwolf's avatar
thomwolf committed
848

thomwolf's avatar
thomwolf committed
849
850
    def call(self, inputs, **kwargs):
        outputs = self.bert(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
851
852
853

        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
854
        pooled_output = self.dropout(pooled_output, training=kwargs.get('training', False))
thomwolf's avatar
thomwolf committed
855
856
857
858
859
860
861
862
863
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # logits, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
thomwolf's avatar
thomwolf committed
864
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
865
866
867
class TFBertForMultipleChoice(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
868
        **classification_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
thomwolf's avatar
thomwolf committed
869
870
871
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
872
            list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
873
874
875
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
876
            list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
877
878
879
880
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
881
882
883
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertForMultipleChoice

thomwolf's avatar
thomwolf committed
884
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
885
        model = TFBertForMultipleChoice.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
886
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
thomwolf's avatar
thomwolf committed
887
        input_ids = tf.constant([tokenizer.encode(s) for s in choices])[None, :]  # Batch size 1, 2 choices
thomwolf's avatar
thomwolf committed
888
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
889
        classification_scores = outputs[0]
thomwolf's avatar
thomwolf committed
890
891

    """
thomwolf's avatar
thomwolf committed
892
893
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForMultipleChoice, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
894
895
896

        self.bert = TFBertMainLayer(config, name='bert')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
897
898
899
        self.classifier = tf.keras.layers.Dense(1,
                                                kernel_initializer=get_initializer(self.config.initializer_range),
                                                name='classifier')
thomwolf's avatar
thomwolf committed
900

thomwolf's avatar
thomwolf committed
901
902
    def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
        if isinstance(inputs, (tuple, list)):
thomwolf's avatar
thomwolf committed
903
            input_ids = inputs[0]
thomwolf's avatar
thomwolf committed
904
905
906
907
            attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
            token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
            position_ids = inputs[3] if len(inputs) > 3 else position_ids
            head_mask = inputs[4] if len(inputs) > 4 else head_mask
thomwolf's avatar
thomwolf committed
908
            assert len(inputs) <= 5, "Too many inputs."
thomwolf's avatar
thomwolf committed
909
        elif isinstance(inputs, dict):
thomwolf's avatar
thomwolf committed
910
            input_ids = inputs.get('input_ids')
thomwolf's avatar
thomwolf committed
911
912
913
914
            attention_mask = inputs.get('attention_mask', attention_mask)
            token_type_ids = inputs.get('token_type_ids', token_type_ids)
            position_ids = inputs.get('position_ids', position_ids)
            head_mask = inputs.get('head_mask', head_mask)
thomwolf's avatar
thomwolf committed
915
            assert len(inputs) <= 5, "Too many inputs."
thomwolf's avatar
thomwolf committed
916
917
        else:
            input_ids = inputs
thomwolf's avatar
thomwolf committed
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

        num_choices = tf.shape(input_ids)[1]
        seq_length = tf.shape(input_ids)[2]

        flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
        flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
        flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
        flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None

        flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]

        outputs = self.bert(flat_inputs, training=training)

        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
933
        pooled_output = self.dropout(pooled_output, training=training)
thomwolf's avatar
thomwolf committed
934
935
936
937
938
939
940
941
942
943
944
945
946
947
        logits = self.classifier(pooled_output)
        reshaped_logits = tf.reshape(logits, (-1, num_choices))

        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # reshaped_logits, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForTokenClassification(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
948
        **scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
thomwolf's avatar
thomwolf committed
949
950
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
951
            list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
952
953
954
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
955
            list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
956
957
958
959
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
960
961
962
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertForTokenClassification

thomwolf's avatar
thomwolf committed
963
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
964
965
        model = TFBertForTokenClassification.from_pretrained('bert-base-uncased')
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
966
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
967
        scores = outputs[0]
thomwolf's avatar
thomwolf committed
968
969

    """
thomwolf's avatar
thomwolf committed
970
971
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForTokenClassification, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
972
973
974
975
        self.num_labels = config.num_labels

        self.bert = TFBertMainLayer(config, name='bert')
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
976
977
978
        self.classifier = tf.keras.layers.Dense(config.num_labels,
                                                kernel_initializer=get_initializer(self.config.initializer_range),
                                                name='classifier')
thomwolf's avatar
thomwolf committed
979

thomwolf's avatar
thomwolf committed
980
981
    def call(self, inputs, **kwargs):
        outputs = self.bert(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
982
983
984

        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
985
        sequence_output = self.dropout(sequence_output, training=kwargs.get('training', False))
thomwolf's avatar
thomwolf committed
986
987
988
989
990
991
992
993
994
995
996
997
998
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        return outputs  # scores, (hidden_states), (attentions)


@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class TFBertForQuestionAnswering(TFBertPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
999
        **start_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length,)``
thomwolf's avatar
thomwolf committed
1000
            Span-start scores (before SoftMax).
thomwolf's avatar
thomwolf committed
1001
        **end_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length,)``
thomwolf's avatar
thomwolf committed
1002
1003
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
thomwolf's avatar
thomwolf committed
1004
            list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
thomwolf's avatar
thomwolf committed
1005
1006
1007
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
thomwolf's avatar
thomwolf committed
1008
            list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
thomwolf's avatar
thomwolf committed
1009
1010
1011
1012
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

thomwolf's avatar
thomwolf committed
1013
1014
1015
        import tensorflow as tf
        from pytorch_transformers import BertTokenizer, TFBertForQuestionAnswering

thomwolf's avatar
thomwolf committed
1016
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
1017
1018
        model = TFBertForQuestionAnswering.from_pretrained('bert-base-uncased')
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
1019
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
1020
        start_scores, end_scores = outputs[:2]
thomwolf's avatar
thomwolf committed
1021
1022

    """
thomwolf's avatar
thomwolf committed
1023
1024
    def __init__(self, config, *inputs, **kwargs):
        super(TFBertForQuestionAnswering, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
1025
1026
1027
        self.num_labels = config.num_labels

        self.bert = TFBertMainLayer(config, name='bert')
thomwolf's avatar
thomwolf committed
1028
1029
1030
        self.qa_outputs = tf.keras.layers.Dense(config.num_labels,
                                                kernel_initializer=get_initializer(self.config.initializer_range),
                                                name='qa_outputs')
thomwolf's avatar
thomwolf committed
1031

thomwolf's avatar
thomwolf committed
1032
1033
    def call(self, inputs, **kwargs):
        outputs = self.bert(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = tf.split(logits, 2, axis=-1)
        start_logits = tf.squeeze(start_logits, axis=-1)
        end_logits = tf.squeeze(end_logits, axis=-1)

        outputs = (start_logits, end_logits,) + outputs[2:]

        return outputs  # start_logits, end_logits, (hidden_states), (attentions)