mgp-str.md 4.93 KB
Newer Older
wangpeng's avatar
wangpeng committed
1
2
3
4
5
6
7
8
9
10
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
11
12
13
14

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

wangpeng's avatar
wangpeng committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
-->

# MGP-STR

## Overview

The MGP-STR model was proposed in [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao. MGP-STR is a conceptually **simple** yet **powerful** vision Scene Text Recognition (STR) model, which is built upon the [Vision Transformer (ViT)](vit). To integrate linguistic knowledge, Multi-Granularity Prediction (MGP) strategy is proposed to inject information from the language modality into the model in an implicit way.

The abstract from the paper is the following:

*Scene text recognition (STR) has been an active research topic in computer vision for years. To tackle this challenging problem, numerous innovative methods have been successively proposed and incorporating linguistic knowledge into STR models has recently become a prominent trend. In this work, we first draw inspiration from the recent progress in Vision Transformer (ViT) to construct a conceptually simple yet powerful vision STR model, which is built upon ViT and outperforms previous state-of-the-art models for scene text recognition, including both pure vision models and language-augmented methods. To integrate linguistic knowledge, we further propose a Multi-Granularity Prediction strategy to inject information from the language modality into the model in an implicit way, i.e. , subword representations (BPE and WordPiece) widely-used in NLP are introduced into the output space, in addition to the conventional character level representation, while no independent language model (LM) is adopted. The resultant algorithm (termed MGP-STR) is able to push the performance envelop of STR to an even higher level. Specifically, it achieves an average recognition accuracy of 93.35% on standard benchmarks.*

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/mgp_str_architecture.png"
alt="drawing" width="600"/>

<small> MGP-STR architecture. Taken from the <a href="https://arxiv.org/abs/2209.03592">original paper</a>. </small>

32
33
MGP-STR is trained on two synthetic datasets [MJSynth]((http://www.robots.ox.ac.uk/~vgg/data/text/)) (MJ) and SynthText(http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
This model was contributed by [yuekun](https://huggingface.co/yuekun). The original code can be found [here](https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR).
wangpeng's avatar
wangpeng committed
34

35
## Inference example
wangpeng's avatar
wangpeng committed
36
37
38
39
40
41
42
43
44
45
46

[`MgpstrModel`] accepts images as input and generates three types of predictions, which represent textual information at different granularities.
The three types of predictions are fused to give the final prediction result.

The [`ViTImageProcessor`] class is responsible for preprocessing the input image and
[`MgpstrTokenizer`] decodes the generated character tokens to the target string. The
[`MgpstrProcessor`] wraps [`ViTImageProcessor`] and [`MgpstrTokenizer`]
into a single instance to both extract the input features and decode the predicted token ids.

- Step-by-step Optical Character Recognition (OCR)

47
```py
wangpeng's avatar
wangpeng committed
48
49
50
51
52
53
54
55
56
57
58
>>> from transformers import MgpstrProcessor, MgpstrForSceneTextRecognition
>>> import requests
>>> from PIL import Image

>>> processor = MgpstrProcessor.from_pretrained('alibaba-damo/mgp-str-base')
>>> model = MgpstrForSceneTextRecognition.from_pretrained('alibaba-damo/mgp-str-base')

>>> # load image from the IIIT-5k dataset
>>> url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

59
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
wangpeng's avatar
wangpeng committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
>>> outputs = model(pixel_values)

>>> generated_text = processor.batch_decode(outputs.logits)['generated_text']
```

## MgpstrConfig

[[autodoc]] MgpstrConfig

## MgpstrTokenizer

[[autodoc]] MgpstrTokenizer
    - save_vocabulary

## MgpstrProcessor

[[autodoc]] MgpstrProcessor
    - __call__
    - batch_decode

## MgpstrModel

[[autodoc]] MgpstrModel
    - forward

## MgpstrForSceneTextRecognition

[[autodoc]] MgpstrForSceneTextRecognition
    - forward